您好,欢迎访问三七文档
AnIntroductiontotheConjugateGradientMethodWithouttheAgonizingPainEdition114JonathanRichardShewchukAugust4,1994SchoolofComputerScienceCarnegieMellonUniversityPittsburgh,PA15213AbstractTheConjugateGradientMethodisthemostprominentiterativemethodforsolvingsparsesystemsoflinearequations.Unfortunately,manytextbooktreatmentsofthetopicarewrittenwithneitherillustrationsnorintuition,andtheirvictimscanbefoundtothisdaybabblingsenselesslyinthecornersofdustylibraries.Forthisreason,adeep,geometricunderstandingofthemethodhasbeenreservedfortheelitebrilliantfewwhohavepainstakinglydecodedthemumblingsoftheirforebears.Nevertheless,theConjugateGradientMethodisacompositeofsimple,elegantideasthatalmostanyonecanunderstand.Ofcourse,areaderasintelligentasyourselfwilllearnthemalmosteffortlessly.TheideaofquadraticformsisintroducedandusedtoderivethemethodsofSteepestDescent,ConjugateDirections,andConjugateGradients.EigenvectorsareexplainedandusedtoexaminetheconvergenceoftheJacobiMethod,SteepestDescent,andConjugateGradients.OthertopicsincludepreconditioningandthenonlinearConjugateGradientMethod.Ihavetakenpainstomakethisarticleeasytoread.Sixty-sixillustrationsareprovided.Denseproseisavoided.Conceptsareexplainedinseveraldifferentways.Mostequationsarecoupledwithanintuitiveinterpretation.SupportedinpartbytheNaturalSciencesandEngineeringResearchCouncilofCanadaundera1967ScienceandEngineeringScholarshipandbytheNationalScienceFoundationunderGrantASC-9318163.Theviewsandconclusionscontainedinthisdocumentarethoseoftheauthorandshouldnotbeinterpretedasrepresentingtheofficialpolicies,eitherexpressorimplied,ofNSERC,NSF,ortheU.S.Government.Keywords:conjugategradientmethod,preconditioning,convergenceanalysis,agonizingpainContents1.Introduction12.Notation13.TheQuadraticForm24.TheMethodofSteepestDescent65.ThinkingwithEigenvectorsandEigenvalues95.1.EigendoitifItry 95.2.Jacobiiterations 115.3.AConcreteExample 126.ConvergenceAnalysisofSteepestDescent136.1.InstantResults 136.2.GeneralConvergence 177.TheMethodofConjugateDirections217.1.Conjugacy 217.2.Gram-SchmidtConjugation 257.3.OptimalityoftheErrorTerm 268.TheMethodofConjugateGradients309.ConvergenceAnalysisofConjugateGradients329.1.PickingPerfectPolynomials 339.2.ChebyshevPolynomials 3510.Complexity3711.StartingandStopping3811.1.Starting 3811.2.Stopping 3812.Preconditioning3913.ConjugateGradientsontheNormalEquations4114.TheNonlinearConjugateGradientMethod4214.1.OutlineoftheNonlinearConjugateGradientMethod 4214.2.GeneralLineSearch 4314.3.Preconditioning 47ANotes48BCannedAlgorithms49B1.SteepestDescent 49B2.ConjugateGradients 50B3.PreconditionedConjugateGradients 51iB4.NonlinearConjugateGradientswithNewton-RaphsonandFletcher-Reeves 52B5.PreconditionedNonlinearConjugateGradientswithSecantandPolak-Ribi`ere 53CUglyProofs54C1.TheSolutiontoAx bMinimizestheQuadraticForm 54C2.ASymmetricMatrixHasnOrthogonalEigenvectors. 54C3.OptimalityofChebyshevPolynomials 55DHomework56iiAboutthisArticleAnelectroniccopyofthisarticleisavailablebyanonymousFTPtoWARP.CS.CMU.EDU(IPaddress128.2.209.103)underthefilenamequake-papers/painless-conjugate-gradient.ps.APostScriptfilecontainingfull-pagecopiesofthefiguresherein,suitablefortransparencies,isavailableasquake-papers/painless-conjugate-gradient-pics.ps.MostoftheillustrationswerecreatedusingMathematica.c 1994byJonathanRichardShewchuk.Thisarticlemaybefreelyduplicatedanddistributedsolongasnoconsiderationisreceivedinreturn,andthiscopyrightnoticeremainsintact.ThisguidewascreatedtohelpstudentslearnConjugateGradientMethodsaseasilyaspossible.Pleasemailme(jrs@cs.cmu.edu)comments,corrections,andanyintuitionsImighthavemissed;someofthesewillbeincorporatedintoasecondedition.Iamparticularlyinterestedinhearingaboutuseofthisguideforclassroomteaching.Forthosewhowishtolearnmoreaboutiterativemethods,IrecommendWilliamL.Briggs’“AMultigridTutorial”[2],oneofthebest-writtenmathematicalbooksIhaveread.SpecialthankstoOmarGhattas,whotaughtmemuchofwhatIknowaboutnumericalmethods,andprovidedmewithextensivecommentsonthefirstdraftofthisarticle.ThanksalsotoJamesEpperson,DavidO’Hallaron,JamesStichnoth,NickTrefethen,andDanielTunkelangfortheircomments.Tohelpyouskipchapters,here’sadependencegraphofthesections:1Introduction2Notation10Complexity13NormalEquations3QuadraticForm4SteepestDescent5Eigenvectors6SDConvergence7ConjugateDire
本文标题:an-introduction-to-the-conjugate-gradient-method-w
链接地址:https://www.777doc.com/doc-4833444 .html