您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > [实用参考]高等数学常用公式大全.doc
优质参考文档优质参考文档高数常用公式平方立方:22222222332233223223332233222(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()(8)222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 21221)(9)()(),(2)nnnnnnabcababaababbn 三角函数公式大全两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tanAtanB-1tanBtanAtan(A-B)=tanAtanB1tanBtanAcot(A+B)=cotAcotB1-cotAcotBcot(A-B)=cotAcotB1cotAcotB倍角公式tan2A=Atan12tanA2Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3cosAtan3a=tana·tan(3+a)·tan(3-a)半角公式sin(2A)=2cos1Acos(2A)=2cos1Atan(2A)=AAcos1cos1cot(2A)=AAcos1cos1tan(2A)=AAsincos1=AAcos1sin和差化积sina+sinb=2sin2bacos2basina-sinb=2cos2basin2bacosa+cosb=2cos2bacos2bacosa-cosb=-2sin2basin2batana+tanb=babacoscos)sin(积化和差sinasinb=-21[cos(a+b)-cos(a-b)]cosacosb=21[cos(a+b)+cos(a-b)]sinacosb=21[sin(a+b)+sin(a-b)]cosasinb=21[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sinacos(-a)=cosa优质参考文档优质参考文档sin(2-a)=cosacos(2-a)=sinasin(2+a)=cosacos(2+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=aacossin万能公式sina=2)2(tan12tan2aacosa=22)2(tan1)2(tan1aatana=2)2(tan12tan2aa其他非重点三角函数csc(a)=asin1sec(a)=acos1双曲函数sinh(a)=2e-e-aacosh(a)=2ee-aatgh(a)=)cosh()sinh(aa其它公式a•sina+b•cosa=)b(a22×sin(a+c)[其中tanc=ab]a•sin(a)-b•cos(a)=)b(a22×cos(a-c)[其中tan(c)=ba]1+sin(a)=(sin2a+cos2a)21-sin(a)=(sin2a-cos2a)2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:优质参考文档优质参考文档sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:2±α及23±α与α的三角函数值之间的关系:sin(2+α)=cosαcos(2+α)=-sinαtan(2+α)=-cotαcot(2+α)=-tanαsin(2-α)=cosαcos(2-α)=sinαtan(2-α)=cotαcot(2-α)=tanαsin(23+α)=-cosαcos(23+α)=sinαtan(23+α)=-cotαcot(23+α)=-tanαsin(23-α)=-cosαcos(23-α)=-sinαtan(23-α)=cotαcot(23-α)=tanα(以上k∈Z)优质参考文档优质参考文档这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•sin(ωt+φ)=)cos(222ABBA×sin)cos(2)Bsininarcsin[(Ast22ABBA特殊角的三角函数值:06432π232π)(f)0()30()45()60()90()180()270()360(sin02/12/22/310-10cos12/32/22/10-101tan03/113不存在0不存在0cot不存在313/10不存在0不存在等价代换:(1)xsinx~(2)xtanx~(3)xarcsinx~(4)xarctanx~(5)2x21cosx1~(6)x)x1(ln~(7)x1ex~(8)ax1)x1(a~基本求导公式:(1) 0)(C,C是常数(2)1)(xx(3)aaaxxln)((4)axxaln1)(log(5)xxcos)(sin(6)xxsin)(cos(7)xxx22seccos1)(tan(8)xxx22cscsin1)(cot(9)xxxtan)(sec)(sec(10)xxxcot)(csc)(csc(11))(arcsinx211x(12)211)(arccosxx(13)211)(arctanxx(14)21(arccot)1xx(15)x21x)((16)2x1x1)(基本积分公式:(1)0dxC(2)为常数kCkxkdx(3)111Cxdxx(4)Cxdxx||ln1优质参考文档优质参考文档(5)Caadxaxxln(6)Cedxexx(7)Cxxdxsincos(8)Cxxdxcossin(9)Cxxdxxdxtanseccos22(10)Cxxdxxdxcotcscsin22(11)Cxxdxxsectansec(12)Cxxdxxcsccotcsc(13)Cxxdxarctan12或(Cxarcxdxcot12)(14)Cxxdxarcsin12或(Cxxdxarccos12)(15)Cxxdx|cos|lntan,(16)Cxxdx|sin|lncot,(17)Cxxxdx|tansec|lnsec,(18)Cxxdxxc|cotcsc|lnsc,一些初等函数:两个重要极限:·正弦定理:RCcBbAa2sinsinsin·余弦定理:Cabbaccos2222·反三角函数性质:arcctgxarctgxxx2arccos2arcsin 高阶导数公式——莱布尼兹(Leibniz)公式:)()()()2()1()(0)()()(!)1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv中值定理与导数应用:xxarthxxxarchxxxarshxeeeechxshxthxeechxeeshxxxxxxxxx11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim1sinlim0exxxxxx优质参考文档优质参考文档拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()())(()()(曲率:.1;0.)1(limMsMM:.,13202aKaKyydsdsKMMsKtgydxydss的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:定积分的近似计算:bannnbannbanyyyyyyyynabxfyyyynabxfyyynabxf)](4)(2)[(3)(])(21[)()()(1312420110110抛物线法:梯形法:矩形法:定积分应用相关公式:babadttfabdxxfabykrmmkFApFsFW)(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:一元二次方程求根公式:aP2+bP+c=a(P-P1)(P-P2)其中:P1=aacbb242;P2=aacbb242(b2-4ac0)根与系数的关系:P1+P2=-ab,P1·P2=ac
本文标题:[实用参考]高等数学常用公式大全.doc
链接地址:https://www.777doc.com/doc-4845869 .html