您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 1.1-锐角三角函数(2)教案
第一章直角三角形的边角关系1.1锐角三角函数(2)一、知识点1.认识锐角三角函数——正弦、余弦2.用sinA,cosA表示直角三角形中直角边与斜边的比,用正弦、余弦进行简单的计算.二、教学目标知识与技能1.能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2.能够用sinA,cosA表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算.过程与方法1.经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点.2、体会解决问题的策略的多样性,发展实践能力和创新精神.情感态度与价值观1.积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学.2、形成实事求是的态度以及交流分享的习惯.三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系.难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题.四、复习引入(出示幻灯片2、3)设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),第4题的问题引发学生的疑问,激起学生的探究欲望.五、探究新知探究活动1(出示幻灯片4):如图,请思考:(1)Rt△AB1C1和Rt△AB2C2的关系是;(2)的关系是和222111ABCBABCB;(3)如果改变B2在斜边上的位置,则的关系是和222111ABCBABCB;思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B1B2AC1C2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念(出示幻灯片5):1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=______.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(出示幻灯片6):(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为:sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为:sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2(出示幻灯片7):我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现(出示幻灯片8):梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA越,梯子越陡.探究活动3(出示幻灯片9):如图,在Rt△ABC中,∠C=90°,AB=20,sinA=0.6,求BC和cosB.通过上面的计算,你发现sinA与cosB有什么关系呢?sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的.设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、及时检测(出示幻灯片10、11)1、如图,在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,sinA的值()A、扩大100倍B、缩小100倍C、不变D、不能确定2、已知∠A,∠B为锐角(1)若∠A=∠B,则sinAsinB;(2)若sinA=sinB,则∠A∠B.3、如图,∠C=90°,CD⊥AB,sinB=()=()=()设计意图:在练习中检验学生对知识的掌握,同时体会在不同的直角三角形中,(如“双垂直模型”),一个锐角的三角函数可以有不同的表示方法,为日后的知识应用打下基础.七、归类提升(出示幻灯片12、13、14、15)类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°,AC=3,AB=6,求∠B的三个三角函数值.类型二:利用三角函数值求线段的长度ACBABC例2、如图,在Rt△ABC中,∠C=90°,BC=3,sinA=513,求AC和AB.类型三:利用已知三角函数值,求其它三角函数值例3、在Rt△ABC中,∠C=90°,BC=6,sinA=35,求cosA、tanB的值.类型四:求非直角三角形中锐角的三角函数值例4、如图,在等腰△ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.设计意图:分类型进行演练,有利于学生掌握思路和方法,由特殊(直角三角形)到一般(非直角三角形),让学生懂得寻找或构造直角三角形是解决三角函数问题的一般思路.八、总结延伸(出示幻灯片16、17、18)1、锐角三角函数定义:sinA=,cosA=,tanA=;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻.九、随堂小测(出示幻灯片19、20)1、如图,分别求∠α,∠β的三个三角函数值.2、在等腰△ABC中,AB=AC=13,BC=10,求sinB,cosB.3、在△ABC中,AB=5,BC=13,AD是BC边上的高,AD=4.求:CD和sinC.4、在Rt△ABC中,∠BCA=90°,CD是中线,BC=8,CD=5.求sin∠ACD,cos∠ACD和tan∠ACD.5、在梯形ABCD中,AD//BC,AB=DC=13,AD=8,BC=18,求sinB,cosB,tanB.CEADFB6、如图,在△ABC中,点D是AB的中点,DC⊥AC,且tan∠BCD=1/3.求∠A的三个三角函数值.设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.
本文标题:1.1-锐角三角函数(2)教案
链接地址:https://www.777doc.com/doc-4856322 .html