您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 药学 > 2019年浙江省高考数学试卷解析(精品)
第1页,共20页2019年浙江省高考数学试卷一、选择题(本大题共10小题,共40.0分)1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁UA)∩B=()A.{−1}B.{0,1}C.{−1,2,3}D.{−1,0,1,3}2.渐进线方程为x±y=0的双曲线的离心率是()A.√22B.1C.√2D.23.若实数x,y满足约束条件{𝑥−3𝑦+4≥03𝑥−𝑦−4≤0𝑥+𝑦≥0,则z=3x+2y的最大值是()A.−1B.1C.10D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.3245.若a>0,b>0,则“a+b≤4”是“ab≤4”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y=1𝑎𝑥,y=1oga(x+12)(a>0且a≠1)的图象可能是()A.B.C.D.7.设0<a<1.随机变量X的分布列是X0a1P131313第2页,共20页则当a在(0,1)内增大时,()A.𝐷(𝑋)增大B.𝐷(𝑋)减小C.𝐷(𝑋)先增大后减小D.𝐷(𝑋)先减小后增大8.设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点).记直线PB与直线AC所成角为α,直线PB与平面ABC所成角为β,二面角P-AC-B的平面角为γ,则()A.𝛽𝛾,𝛼𝛾B.𝛽𝛼,𝛽𝛾C.𝛽𝛼,𝛾𝛼D.𝛼𝛽,𝛾𝛽9.设a,b∈R,函数f(x)={𝑥,𝑥<0,13𝑥3−12(𝑎+1)𝑥2+𝑎𝑥,𝑥≥0.若函数y=f(x)-ax-b恰有3个零点,则()A.𝑎−1,𝑏0B.𝑎−1,𝑏0C.𝑎−1,𝑏0D.𝑎−1,𝑏010.设a,b∈R,数列{an}满足a1=a,an+1=an2+b,n∈N*,则()A.当𝑏=12时,𝑎1010B.当𝑏=14时,𝑎1010C.当𝑏=−2时,𝑎1010D.当𝑏=−4时,𝑎1010二、填空题(本大题共7小题,共36.0分)11.复数z=11+𝑖(i为虚数单位),则|z|=______.12.已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C相切于点A(-2,-1),则m=______,r=______.13.在二项式(√2+x)9展开式中,常数项是______,系数为有理数的项的个数是______.14.在△ABC中,∠ABC=90°,AB=4,BC=3,点D在线段AC上,若∠BDC=45°,则BD=______,cos∠ABD=______.15.已知椭圆𝑥29+𝑦25=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是______.16.已知a∈R,函数f(x)=ax3-x.若存在t∈R,使得|f(t+2)-f(t)|≤23,则实数a的最大值是______.17.已知正方形ABCD的边长为1.当每个λi(i=1,2,3,4,5,6)取遍±1时,|λ1𝐴𝐵⃗⃗⃗⃗⃗+λ2𝐵𝐶⃗⃗⃗⃗⃗+λ3𝐶𝐷⃗⃗⃗⃗⃗+λ4𝐷𝐴⃗⃗⃗⃗⃗+λ5𝐴𝐶⃗⃗⃗⃗⃗+λ6𝐵𝐷⃗⃗⃗⃗⃗⃗|的最小值是______,最大值是______.三、解答题(本大题共5小题,共71.0分)18.设函数f(x)=sinx,x∈R.(Ⅰ)已知θ∈[0,2π),函数f(x+θ)是偶函数,求θ的值;(Ⅱ)求函数y=[f(x+𝜋12)]2+[f(x+𝜋4)]2的值域.19.如图,已知三棱柱ABC-A1B1C1,平面A1ACC1⊥平面ABC,∠ABC=90°,∠BAC=30°,A1A=A1C=AC,E,F分别是AC,A1B1的中点.(Ⅰ)证明:EF⊥BC;(Ⅱ)求直线EF与平面A1BC所成角的余弦值.第3页,共20页20.设等差数列{an}的前n项和为Sn,a3=4,a4=S3.数列{bn}满足:对每个n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn成等比数列.(Ⅰ)求数列{an},{bn}的通项公式;(Ⅱ)记cn=√𝑎𝑛2𝑏𝑛,n∈N*,证明:c1+c2+…+cn<2√𝑛,n∈N*.21.如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(Ⅰ)求p的值及抛物线的准线方程;(Ⅱ)求𝑆1𝑆2的最小值及此时点G点坐标.第4页,共20页22.已知实数a≠0,设函数f(x)=alnx+√1+𝑥,x>0.(Ⅰ)当a=-34时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[1𝑒2,+∞)均有f(x)≤√𝑥2𝑎,求a的取值范围.注意:e=2.71828……为自然对数的底数.第5页,共20页答案和解析1.【答案】A【解析】解:∵∁UA={-1,3},∴(∁UA)∩B={-1,3}∩{-1,0,l}={-1}故选:A.由全集U以及A求A的补集,然后根据交集定义得结果.本题主要考查集合的基本运算,比较基础.2.【答案】C【解析】解:根据渐进线方程为x±y=0的双曲线,可得a=b,所以c=则该双曲线的离心率为e==,故选:C.由渐近线方程,转化求解双曲线的离心率即可.本题主要考查双曲线的简单性质的应用,属于基础题.3.【答案】C【解析】【分析】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由实数x,y满足约束条件作出可行域如图,第6页,共20页联立,解得A(2,2),化目标函数z=3x+2y为y=-x+z,由图可知,当直线y=-x+z过A(2,2)时,直线在y轴上的截距最大,z有最大值:10.故选:C.4.【答案】B【解析】解:由三视图还原原几何体如图,该几何体为直五棱柱,底面五边形的面积可用两个直角梯形的面积求解,即=27,高为6,则该柱体的体积是V=27×6=162.故选:B.由三视图还原原几何体,可知该几何体为直五棱柱,由两个梯形面积求得底面积,代入体积公式得答案.本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.【答案】A【解析】【分析】本题主要考查充分条件和必要条件的判断,均值不等式,考查了推理能力与计算能力.第7页,共20页充分条件和必要条件的定义结合均值不等式、特值法可得结果.【解答】解:∵a>0,b>0,∴4≥a+b≥2,∴2≥,∴ab≤4,即a+b≤4⇒ab≤4,若a=4,b=,则ab=1≤4,但a+b=4+>4,即ab≤4推不出a+b≤4,∴a+b≤4是ab≤4的充分不必要条件故选A.6.【答案】D【解析】解:由函数y=,y=1oga(x+),当a>1时,可得y=是递减函数,图象恒过(0,1)点,函数y=1oga(x+),是递增函数,图象恒过(,0)点;当1>a>0时,可得y=是递增函数,图象恒过(0,1)点,函数y=1oga(x+),是递减函数,图象恒过(,0)点;∴满足要求的图象为D,故选D.对a进行讨论,结合指数,对数函数的性质即可判断.本题考查了指数函数,对数函数的图象和性质,属于基础题.7.【答案】D【解析】解:E(X)=0×+a×+1×=,D(X)=()2×+(a-)2×+(1-)2×=[(a+1)2+(2a-1)2+(a-2)2]=(a2-a+1)=(a-)2+∵0<a<1,∴D(X)先减小后增大故选:D.方差公式结合二次函数的单调性可得结果第8页,共20页本题考查方差的求法,利用二次函数是关键,考查推理能力与计算能力,是中档题.8.【答案】B【解析】解:方法一、如图G为AC的中点,V在底面的射影为O,则P在底面上的射影D在线段AO上,作DE⊥AC于E,易得PE∥VG,过P作PF∥AC于F,过D作DH∥AC,交BG于H,则α=∠BPF,β=∠PBD,γ=∠PED,则cosα===<=cosβ,可得β<α;tanγ=>=tanβ,可得β<γ,方法二、由最小值定理可得β<α,记V-AC-B的平面角为γ'(显然γ'=γ),由最大角定理可得β<γ'=γ;方法三、(特殊图形法)设三棱锥V-ABC为棱长为2的正四面体,P为VA的中点,易得cosα==,可得sinα=,sinβ==,sinγ==,故选:B.本题以三棱锥为载体,综合考查异面直线所成角、直线和平面所成角和二倍角的概念和计算,解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小,充分运用图象,则可事半功倍,本题考查空间三种角的求法,常规解法下易出现的错误的有:不能正确作出各种角,未能想到利用“特殊位置法”,寻求简单解法.9.【答案】C【解析】第9页,共20页解:当x<0时,y=f(x)-ax-b=x-ax-b=(1-a)x-b=0,得x=;y=f(x)-ax-b最多一个零点;当x≥0时,y=f(x)-ax-b=x3-(a+1)x2+ax-ax-b=x3-(a+1)x2-b,y′=x2-(a+1)x,当a+1≤0,即a≤-1时,y′≥0,y=f(x)-ax-b在[0,+∞)上递增,y=f(x)-ax-b最多一个零点.不合题意;当a+1>0,即a<-1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)-ax-b恰有3个零点⇔函数y=f(x)-ax-b在(-∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴<0且,解得b<0,1-a>0,b>-(a+1)3.故选:C.当x<0时,y=f(x)-ax-b=x-ax-b=(1-a)x-b最多一个零点;当x≥0时,y=f(x)-ax-b=x3-(a+1)x2+ax-ax-b=x3-(a+1)x2-b,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.本题考查了函数与方程的综合运用,属难题.10.【答案】A【解析】解:对于B,令=0,得λ=,取,∴,∴当b=时,a10<10,故B错误;第10页,共20页对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,∴a2=2,…,an=2<10,∴当b=-2时,a10<10,故C错误;对于D,令x2-λ-4=0,得,取,∴,…,<10,∴当b=-4时,a10<10,故D错误;对于A,,,≥,an+1-an>0,{an}递增,当n≥4时,=an+>1+=,∴,∴>()6,∴a10>>10.故A正确.故选:A.对于B,令=0,得λ=,取,得到当b=时,a10<10;对于C,令x2-λ-2=0,得λ=2或λ=-1,取a1=2,得到当b=-2时,a10<10;对于D,令x2-λ-4=0,得,取,得到当b=-4时,a10<10;对于A,,,≥,当n≥4时,=an+>1+=,由此推导出>()6,从而a10>>10.本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,是中档题.第11页,共20页11.【答案】√22【解析】解:∵z==.∴|z|=.故答案为:.利用复数代数形式的除法运算化简,然后利用模的计算公式求模.本题考查了复数代数形式的除法运算,考查了复数模的求法,是基础题.12.【答案】-2√5【解析】解:如图,由圆心与切点的连线与切线垂直,得,解得m=-2.∴圆心为(0,-2),则半径r=.故答案为:-2,.由题意画出图形,利用圆心与切点的连线与切线垂直列式求得m,再由两点间的距离公式求半径.本题考查直线与圆位置关系的应
本文标题:2019年浙江省高考数学试卷解析(精品)
链接地址:https://www.777doc.com/doc-4883918 .html