您好,欢迎访问三七文档
《组合》例1.在产品检验中,常从产品中抽出一部分进行检查.现有100件产品,其中3件次品,97件正品.要抽出5件进行检查,根据下列各种要求,各有多少种不同的抽法?(1)无任何限制条件;(2)全是正品;(3)只有2件正品;(4)至少有1件次品;(5)至多有2件次品;(6)次品最多.1.有10道试题,从中选答8道,共有种选法、又若其中6道必答,共有不同的种选法.2.某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中,各有多少种不同的选法?(1)无任何限制条件;(2)正、副班长必须入选;(3)正、副班长只有一人入选;(4)正、副班长都不入选;(5)正、副班长至少有一人入选;(5)正、副班长至多有一人入选;练习:例2从数字1,2,5,7中任选两个练习有不同的英文书5本,不同的中文书7本,从中选出两本书.(1)若其中一本为中文书,一本为英文书.问共有多少种选法?(1)可以得到多少个不同的和?(2)可以得到多少个不同的差?(2)若不限条件,问共有多少种选法?例4有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其它5人既会划左舷,又会划右舷,现要从这12名运动员中选出6人平均分在左右舷参加划船比赛,有多少种不同的选法?例3在∠MON的边OM上有5个异于O点的点,ON上有4个异于O点的点,以这十个点(含O)为顶点,可以得到多少个三角形?NOMABCDEFGHI·········练习如图,在以AB为直径的半圆周上有异于A,B的六个点C1,C2,C3,C4,C5,C6,AB上有异于A,B的四个点D1,D2,D3,D4,问以这10个点中的3个点为顶点可作多少个三角形?ABD1D2D3D4﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒C1C2C3C4C5C6______,4A3A2918nnn则已知__________3337410ACC________,231010xCCxx则_______9910098999799CCC练习一129999CCC(1)(2)(3)(4)例1.6本不同的书,按下列要求各有多少种分法(1)分给甲、乙、丙三人,每人2本;例题解读:例1.6本不同的书,按下列要求各有多少种选法:(2)分为三份,每份2本;例題解读:本题是分组中的“均匀分组”问题.将mn个元素均匀分成n组(每组m个元素),共有mmmmnmnmmnnCCCA6本不同的书,按下列要求各有多少种不同选法:(3)分为三份,一份1本,一份2本,一份3本;(4)甲、乙、丙三人,一人1本,一人2本,一人3本;例题解读:6本不同的书,按下列要求各有多少种不同的选法:(5)分给甲、乙、丙三人,每人至少1本例题解读:例.有10个运动员名额,再分给7个班,每班至少一个,有多少种分配方案?一班二班三班四班五班六班七班例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共有多少种不同的分配方法?(2)10个优秀指标分配到1、2、3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?例题解读:例3.(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?例题解读例4.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?例题解读:8双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求满足如下条件各有多少种情况:(1)4只鞋子恰有两双;(2)4只鞋子没有成双的;(3)4只鞋子只有一双。例7:1、某学习小组有5个男生3个女生,从中选3名男生和1名女生参加三项竞赛活动,每项活动至少有1人参加,则有不同参赛方法______种.2、3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?综合问题,先“组”后“排”课堂练习:2、从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则有不同的选法种数为。1、把6个学生分到一个工厂的三个车间实习,每个车间2人,若甲必须分到一车间,乙和丙不能分到二车间,则不同的分法有种。32328778.()()ACCCC32328778.()()BCCCC32328778.CCCCC3218711.DCCC3、要从8名男医生和7名女医生中选5人组成一个医疗队,如果其中至少有2名男医生和至少有2名女医生,则不同的选法种数为()4、从7人中选出3人分别担任学习委员、宣传委员、体育委员,则甲、乙两人不都入选的不同选法种数共有()2353.ACA3353.2BCA35.CA233535.2DCAA1.5个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是.2.某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有种方法.3.一个集合有5个元素,则该集合的非空真子集共有4.平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成个平行四边形.5.空间有三组平行平面,第一组有m个,第二组有n个,第三组有t个,不同两组的平面都相交,且交线不都平行,可构成个平行六面体课堂练习:6.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有种不同的调换方法7.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次活动,要求有女生但人数必须少于男生,有____种选派方法;(3)分成三组,每组3人,有_______种不同分法.课堂练习:例5.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A.24种B.36种C.48D.72种例题解读:例6.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有()A.20种B.30种C.40种D.60种某电视台邀请了6位同学的父母共12人,请这12位家长中的4位介绍对子女的教育情况,如果这4位中恰有一对是夫妻,那么不同选择方法的种数是()(A)60(B)120(C)240(D)270某次数学测验中,学号是i(i=1、2、3、4)的四位同学的考试成绩f(i)∈{86,87,88,89,90},且满足f(1)<f(2)≤f(3)<f(4),则四位同学的成绩可能情况有()(A)5种(B)12种(C)15种(D)10种
本文标题:组合--习题课分析
链接地址:https://www.777doc.com/doc-4883928 .html