您好,欢迎访问三七文档
开卷速查(四十二)空间点、直线、平面之间的位置关系A级基础巩固练1.平面α∩β=l,点A∈α,点B∈α,且C∉l,C∈β,又AB∩l=R,如图所示,过A、B、C三点确定的平面为γ,则β∩γ是()A.直线ACB.直线BCC.直线CRD.直线AR解析:由已知条件可知,C∈γ,AB∩l=R,AB⊂γ,∴R∈γ.又∵C,R∈β,故CR=β∩γ.答案:C2.如图所示,ABCDA1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A、M、O三点共线B.A、M、O、A1不共面C.A、M、C、O不共面D.B、B1、O、M共面解析:连接A1C1,AC,则A1C1∥AC,∴A1、C1、C、A四点共面.∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1.又M∈平面AB1D1,∴M为平面ACC1A1与AB1D1的公共点.同理OA为平面ACC1A1与平面AB1D1的公共点.∴A、M、O三点共线.答案:A3.正方体AC1中,E、F分别是线段BC、CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.答案:A4.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④解析:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图,∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.答案:D5.在正四棱锥VABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为()A.π6B.π4C.π3D.π2解析:如图所示,设AC∩BD=O,连接VO,由于四棱锥VABCD是正四棱锥,所以VO⊥平面ABCD,故BD⊥VO.又四边形ABCD是正方形,所以BD⊥AC,所以BD⊥平面VAC.所以BD⊥VA,即异面直线VA与BD所成角的大小为π2.答案:D6.已知l,m,n是空间中的三条直线,命题p:若m⊥l,n⊥l,则m∥n;命题q:若直线l,m,n两两相交,则直线l,m,n共面,则下列命题为真命题的是()A.p∧qB.p∨qC.p∨(綈q)D.(綈p)∧q解析:命题p中,m,n可能平行、还可能相交或异面,所以命题p为假命题;命题q中,当三条直线交于三个不同的点时,三条直线一定共面,当三条直线交于一点时,三条直线不一定共面,所以命题q也为假命题.所以綈p和綈q都为真命题,故p∨(綈q)为真命题.选C.答案:C7.下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是______.①②③④解析:在④图中,可证Q点所在棱与面PRS平行,因此,P、Q、R、S四点不共面.可证①中四边形PQRS为梯形;③中可证四边形PQRS为平行四边形;②中如图所示取A1A与BC的中点为M、N可证明PMQNRS为平面图形,且PMQNRS为正六边形.答案:①②③8.如图,在正方体ABCDA1B1C1D1中,M、N分别是棱CD、CC1的中点,则异面直线A1M与DN所成的角的大小是__________.解析:如图,连接D1M,可证D1M⊥DN.又∵A1D1⊥DN,A1D1,MD1⊂平面A1MD1,A1D1∩MD1=D1,∴DN⊥平面A1MD1,∴DN⊥A1M,即夹角为90°.答案:90°9.如图所示,在正三棱柱ABCA1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.解析:在平面ABC内,过A作DB的平行线AE,过B作BH⊥AE于H,连接B1H,则在Rt△AHB1中,∠B1AH为AB1与BD所成角.设AB=1,则A1A=2,∴B1A=3,AH=BD=32,∴cos∠B1AH=AHAB1=12,∴∠B1AH=60°.答案:60°10.如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC綊12AD,BE綊12FA,G、H分别为FA、FD的中点.(1)证明:四边形BCHG是平行四边形.(2)C、D、F、E四点是否共面?为什么?解析:(1)由已知FG=GA,FH=HD,可得GH綊12AD.又BC綊12AD,∴GH綊BC.∴四边形BCHG为平行四边形.(2)方法一:由BE綊12AF,G为FA中点知,BE綊FG,∴四边形BEFG为平行四边形.∴EF∥BG.由(1)知BG∥CH,∴EF∥CH,∴EF与CH共面.又D∈FH,∴C、D、F、E四点共面.方法二:如图,延长FE,DC分别与AB交于点M,M′,∵BE綊12AF,∴B为MA中点.∵BC綊12AD,∴B为M′A中点.∴M与M′重合,即FE与DC交于点M(M′).∴C、D、F、E四点共面.B级能力提升练11.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD所成的角为60°解析:如图,把展开图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可见选项A,B,C不正确.∴正确选项为D.图2中,BE∥CD,∠ABE为AB与CD所成的角,△ABE为等边三角形,∴∠ABE=60°.图1图2答案:D12.[2014·课标全国Ⅱ]直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.110B.25C.3010D.22解析:建立如图所示的空间直角坐标系C-xyz,设BC=2,则B(0,2,0),A(2,0,0),M(1,1,2),N(1,0,2),所以BM→=(1,-1,2),AN→=(-1,0,2),故BM与AN所成角θ的余弦值cosθ=|BM→·AN→||BM→|·|AN→|=36×5=3010.答案:C13.设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a的取值范围是()A.(0,2)B.(0,3)C.(1,2)D.(1,3)解析:如图所示的四面体ABCD中,设AB=a,则由题意可得CD=2,其他边的长都为1,故三角形ACD及三角形BCD都是以CD为斜边的等腰直角三角形,显然a0.取CD中点E,连接AE,BE,则AE⊥CD,BE⊥CD且AE=BE=1-222=22,显然A,B,E三点能构成三角形,应满足任意两边之和大于第三边,可得2×22a,解得0a2.答案:A14.(1)已知异面直线a与b所成的角θ=60°,P为空间一点,则过P点与a和b所成角φ=45°的直线有几条?(2)已知异面直线a与b所成的角θ=60°,P为空间一点,则过P点与a和b所成角φ=60°的直线有几条?(3)已知异面直线a与b所成的角θ=60°,P为空间一点,则过P点与a与b所成角φ=70°的直线有几条?解析:过点P作直线a′∥a,b′∥b,且a′与b′所确定的平面为α.(1)过P点在平面α外存在两条直线与a、b所成的角为45°.(2)过P点在平面α内存在一条直线(120°的角平分线)与a、b所成的角为60°;过P点在平面α外存在两条直线与a、b所成的角为60°,则与a、b所成的角为60°的直线有3条.(3)过P点在平面α外a′、b′成60°夹角平分线上、下存在两条直线与a、b所成的角为70°,过P点在平面α外a′、b′成120°夹角平分线上、下存在两条直线与a、b所成的角为70°,则与a、b所成的角为70°的直线有4条.
本文标题:2016届高考数学理新课标A版一轮总复习开卷速查-必修部分42-空间点、直线、平面之间的位置关系
链接地址:https://www.777doc.com/doc-4884696 .html