您好,欢迎访问三七文档
大数据与云计算摘要:大数据(BigData)这个概念近年来在越来越多的场合、被越来越多的人提及,并且经常和云计算联系在一起,云计算与大数据之间到底是什么关系成为热点话题。本专题报告包含以下四个方面内容:1.大数据的价值;2.大数据带来的挑战;3.大数据研究成果;4.云计算是大数据挖掘的主流方式。通过本报告阐述我们对大数据的理解,以及对大数据的价值的认识,探讨大数据处理与挖掘技术,大数据主要着眼于“数据”,提供数据采集、挖掘、分析的技术和方法;云计算技术主要关注“计算”,提供IT解决方案。大数据、云计算技术可以促进持续审计方式的发展、总体审计模式的应用、审计成果的综合应用、相关关系证据的应用、高效数据审计的发展和大数据审计师的发展。强化大数据、云计算技术审计应用的措施包括制定长远发展战略、加快审计法规建设、建立行业平台、加强研发和提高利用能力。关键词:大数据云计算数据挖掘对审计影响政策建议引言目前,大数据伴随着云计算技术的发展,正在对全球经济社会生活产生巨大的影响。大数据、云计算技术给现代审计提供了新的技术和方法,要求审计组织和审计人员把握大数据、云计算技术的内容与特征,促进现代审计技术和方法的进一步发展。一、大数据、云计算的涵义与特征随着云计算技术的出现,大数据吸引了全世界越来越多的关注。哈佛大学社会学教授加里·金(2012)说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”(一)大数据的涵义与特征“数据”(data)这个词在拉丁文里是“已知”的意思,也可以理解为“事实”。2009年,“大数据”概念才逐渐开始在社会上传播。而“大数据”概念真正变得火爆,却是因为美国奥巴马政府在2012年高调宣布了其“大数据研究和开发计划”。这标志着“大数据”时代真正开始进入社会经济生活中来了。“大数据”(bigdata),或称巨量资料,指的是所涉及的数据量规模大到无法利用现行主流软件工具,在一定的时间内实现收集、分析、处理或转化成为帮助决策者决策的可用信息。互联网数据中心(IDC)认为“大数据”是为了更经济、更有效地从高频率、大容量、不同结构和类型的数据中获取价值而设计的新一代架构和技术,用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。大数据具有4个特点:第一,数据体量巨大(Volume),从TB级别跃升到PB级别。第二,处理速度快(Velocity),这与传统的数据挖掘技术有着本质的不同。第三,数据种类多(Variety),有图片、地理位置信息、视频、网络日志等多种形式。第四,价值密度低,商业价值高(Value)。存在单一数据的价值并不大,但将相关数据聚集在一起,就会有很高的商业价值(金良,2012)。大数据时代,不仅改变了传统的数据采集、处理和应用技术与方法,还促使人们思维方式的改变。大数据的精髓在于促使人们在采集、处理和使用数据时思维的转变,这些转变将改变人们理解和研究社会经济现象的技术和方法。(1)是在大数据时代,不依赖抽样分析,而可以采集和处理事物整体的全部数据。19世纪以来,当面临大的样本量时,人们都主要依靠抽样来分析总体。但是,抽样技术是在数据缺乏和取得数据受限制的条件下不得不采用的一种方法,这其实是一种人为的限制。过去,因为记录、储存和分析数据的工具不够科学,只能收集少量数据进行分析。如今,科学技术条件已经有了很大的提高,虽然人类可以处理的数据依然是有限的,但是可以处理的数据量已经大量增加,而且未来会越来越多。随着大数据分析取代抽样分析,社会科学不再单纯依赖于抽样调查和分析实证数据,现在可以收集过去无法收集到的数据,更重要的是,现在可以不再依赖抽样分析。(2)是在大数据时代,不再热衷于追求数据的精确度,而是追求利用数据的效率。当测量事物的能力受限制时,关注的是获取最精确的结果。但是,在大数据时代,追求精确度已经既无必要又不可行,甚至变得不受欢迎。大数据纷繁多样,优劣掺杂,精准度已不再是分析事物总体的主要手段。拥有了大数据,不再需要对一个事物的现象深究,只要掌握事物的大致发展趋势即可,更重要的是追求数据的及时性和使用效率。与依赖于小数据和精确性的时代相比较,大数据更注重数据的完整性和混杂性,帮助人们进一步认识事物的全貌和真相。(3)是在大数据时代,人们难以寻求事物直接的因果关系,而是深入认识和利用事物的相关关系。长期以来,寻找因果关系是人类发展过程中形成的传统习惯。寻求因果关系即使很困难且用途不大,但人们无法摆脱认识的传统思维。在大数据时代,人们不必将主要精力放在事物之间因果关系的分析上,而是将主要精力放在寻找事物之间的相关关系上。事物之间的相关关系可能不会准确地告知事物发生的内在原因,但是它会提醒人们事情之间的相互联系。人们可以通过找到一个事物的良好相关关系,帮助其捕捉到事物的现在和预测未来。(二)云计算的涵义与特征“云计算”概念产生于谷歌和IBM等大型互联网公司处理海量数据的实践。2006年8月9日,Google首席执行官埃里克·施密特(EricSchmidt)在搜索引擎大会首次提出“云计算”的概念。2007年10月,Google与IBM开始在美国大学校园推广云计算技术的计划,这项计划希望能降低分布式计算技术在学术研究方面的成本,并为这些大学提供相关的软硬件设备及技术支持(MichaelMille,2009)。目前全世界关于“云计算”的定义有很多。“云计算”是基于互联网的相关服务的增加、使用和交付模式,是通过互联网来提供动态易扩展且经常是虚拟化的资源。美国国家标准技术研究院(NIST)2009年关于云计算的定义是:“云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务等),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。”根据这一定义,云计算的特征主要表现为:首先,云计算是一种计算模式,具有时间和网络存储的功能。其次,云计算是一条接入路径,通过广泛接入网络以获取计算能力,通过标准机制进行访问。第三,云计算是一个资源池,云计算服务提供商的计算资源,通过多租户模式为不同用户提供服务,并根据用户的需求动态提供不同的物理的或虚拟的资源。第四,云计算是一系列伸缩技术,在信息化和互联网环境下的计算规模可以快速扩大或缩小,计算能力可以快速、弹性获得。第五,云计算是一项可计量的服务,云计算资源的使用情况可以通过云计算系统检测、控制、计量,以自动控制和优化资源使用。(三)大数据与云计算的关系从整体上看,大数据与云计算是相辅相成的。大数据主要专注实际业务,着眼于“数据”,提供数据采集、挖掘、分析的技术和方法,强调的是数据存储能力。云计算主要关注“计算”,关注IT架构,提供IT解决方案,强调的是计算能力,即数据处理能力。如果没有大数据的数据存储,那么云计算的计算能力再强大,也难以找到用武之地;如果没有云计算的数据处理能力,则大数据的数据存储再丰富,也终究难以用于实践中去。从技术上看,大数据依赖于云计算。海量数据存储技术、海量数据管理技术、MapReduce编程模型都是云计算的关键技术,也都是大数据的技术基础。而数据之所以会变“大”,最重要的便是云计算提供的技术平台。数据被放到“云”上之后,打破了过去那种各自分割的数据存储,更容易被收集和获得,大数据才能呈现在人们眼前。而巨量的数据也只能依靠云计算强大的数据处理能力,才能够“淘尽黄沙始得金”。从侧重点看,大数据与云计算的侧重点不同。大数据的侧重点是各种数据,广泛、深入挖掘巨量数据,发现数据中的价值,迫使企业从“业务驱动”转变为“数据驱动”。而云计算主要通过互联网广泛获取、扩展和管理计算及存储资源和能力,其侧重点是IT资源、处理能力和各种应用,以帮助企业节省IT部署成本。云计算使企业的IT部门受益,而大数据使企业的业务管理部门受益。从结果看,大数据与云计算带来不同的变化。大数据对社会经济带来的变化是巨大的,涉及到各个领域。大数据已经与资本、人力一起作为生产的主要因素影响着社会经济的发展。数据创造价值,而挖掘数据价值、利用数据的“推动力”就是云计算。云计算将信息存储、分享和挖掘能力极大提高,更经济、高效地将巨量、高速、多变的终端数据存储下来,并随时进行计算与分析。通过云计算对大数据进行分析、总结与预测,会使得决策更可靠,释放出更多大数据的内在价值。二、大数据、云计算技术对审计的影响分析审计技术和方法的发展是随着科学和管理技术的发展而发展的。现代审计技术和方法体系是在原始的查账基础上从低级向高级、从不完备到比较完备发展起来的。在业务和会计处理手工操作阶段,审计实施的是账表导向的审计技术和方法;当内部控制理论和方法全面应用于业务和会计处理时,审计实施的是系统导向的审计技术和方法;当风险管理理论和方法全面应用于业务和财务管理时,审计实施的是风险导向审计技术和方法;与风险导向审计技术和方法并行的是,计算机技术广泛应用于业务和会计处理时,审计实施的是IT审计技术和方法。目前,面对大数据、云计算技术的产生和发展,审计人员需要应时而变来适应由此而带来的变化,分析大数据、云计算技术对审计方式、审计抽样技术、审计报告模式、审计证据搜集等技术和方法的影响。(一)大数据、云计算技术促进持续审计方式的发展传统审计中,审计人员只是在被审计单位业务完成后才进行审计,而且审计过程中并不是审计所有的数据和信息,只是抽取其中有的一部分进行审计。这种事后和有限的审计对被审计单位复杂的生产经营和管理系统来说很难及时做出正确的评价,而且对于评价日益频繁和复杂的经营管理活动的真实性和合法性则显得过于迟缓。随着信息技术迅速发展,越来越多的审计组织对被审计单位开始实施持续审计方式,以解决审计结果与经济活动的时差问题。但是,审计人员实施持续审计时,往往受目前业务条件和信息化手段的限制,取得的非结构化数据无法数据化,或者无法取得相关的明细数据,致使对问题的判断也难以进一步具体和深入。而大数据、云计算技术可以促进持续审计方式的发展,使信息技术与大数据、云计算技术较好交叉融合,尤其对业务数据和风险控制“实时性”要求较高的特定行业,如银行、证券、保险等行业,在这些行业中实施持续审计迫在眉睫。如审计组织对商业银行的审计,实行与商业银行建立业务和数据系统的接口,在开发的持续审计系统中固化了非结构化数据结构化和数据分析模块,该模块可以在海量贷款客户中挖掘、分析出行业性和区域性贷款风险趋势,实现在线的风险预警,并将发现的风险数据、超预警值指标及问题登记为疑点,并建立实时审计工作底稿,按照重要程度进行归类、核实或下发给现场审计人员进行现场核实,以较好处理非结构化数据的利用和数据的实时分析利用问题。(二)大数据、云计算技术促进总体审计模式的应用现时的审计模式是在评价被审计单位风险基础上实施抽样审计。在不可能收集和分析被审计单位全部经济业务数据的情况下,现时的审计模式主要依赖于审计抽样,从局部入手推断整体,即从抽取的样本着手进行审计,再据此推断审计对象的整体情况。这种抽样审计模式,由于抽取样本的有限性,而忽视了大量和具体的业务活动,使审计人员无法完全发现和揭示被审计单位的重大舞弊行为,隐藏着重大的审计风险。而大数据、云计算技术对审计人员而言,不仅仅是一种可供采用的技术手段,这些技术和方法将给审计人员提供实施总体审计模式的可行性。利用大数据、云计算技术,对数据的跨行业、跨企业搜集和分析,可以不用随机抽样方法,而采用搜集和分析被审计单位所有数据的总体审计模式。利用大数据、云计算技术的总体审计模式是要分析与审计对象相关的所有数据,使得审计人员可以建立总体审计的思维模式,可以使现代审计获得革命性的变化。审计人员实施总体审计模式,可以规避审计抽样风险。如果能够收集总体的所有数据,就能看到更细微、深入的信息,对数据进行多角度的深层次分析,从而发现隐藏在细节数据中的对审计问题更具价值的信息。同时,审计人员实施总体审计模式,能发现从审计抽样模式所不能发现的问
本文标题:大数据与云计算论文
链接地址:https://www.777doc.com/doc-4905104 .html