您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2018年新课标全国1卷文数试题与答案解析
12018年普通高等学校招生全国统一考试新课标1卷文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}解析:选A2.设z=1-i1+i+2i,则|z|=A.0B.12C.1D.2解析:选Cz=1-i1+i+2i=-i+2i=i3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为()A.13B.12C.22D.223解析:选C∵c=2,4=a2-4∴a=22∴e=2225.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π解析:选B设底面半径为R,则(2R)2=8∴R=2,圆柱表面积=2πR×2R+2πR2=12π6.设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x解析:选D∵f(x)为奇函数∴a=1∴f(x)=x3+xf′(x)=3x2+1f′(0)=1故选D7.在ΔABC中,AD为BC边上的中线,E为AD的中点,则EB→=A.34AB→-14AC→B.14AB→-34AC→C.34AB→+14AC→D.14AB→+34AC→解析:选A结合图形,EB→=-12(BA→+BD→)=-12BA→-14BC→=-12BA→-14(AC→-AB→)=34AB→-14AC→8.已知函数f(x)=2cos2x-sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为4解析:选Bf(x)=32cos2x+52故选B9.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.217B.25C.3D.2解析:选B所求最短路径即四份之一圆柱侧面展开图对角线的长10.在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为300,则该长方体的体积为A.8B.62C.82D.83解析:选C∵AC1与平面BB1C1C所成的角为300,AB=2∴AC1=4BC1=23BC=2∴CC1=22V=2×2×22=8211.已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=23,则|a-b|=A.15B.55C.255D.1解析:选B∵cos2α=232cos2α-1=23cos2α=56∴sin2α=16∴tan2α=153又|tanα|=|a-b|∴|a-b|=5512.设函数f(x)=2-x,x≤01,x0,则满足f(x+1)f(2x)的x的取值范围是()A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)解析:选Dx≤-1时,不等式等价于2-x-12-2x,解得x1,此时x≤-1满足条件-1x≤0时,不等式等价于12-2x,解得x0,此时-1x0满足条件x0时,11不成立故选D二、填空题(本题共4小题,每小题5分,共20分)13.已知函数f(x)=log2(x2+a),若f(3)=1,则a=________.解析:log2(9+a)=1,即9+a=2,故a=-714.若x,y满足约束条件x-2y-2≤0x-y+1≥0y≤0,则z=3z+2y的最大值为___________.解析:答案为615.直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R2-d2=2216.△ABC的内角A,B,C的对边分别为a,b,c,已知bsinC+csinB=4asinBsinC,b2+c2-a2=8,则△ABC的面积为________.解析:由正弦定理及bsinC+csinB=4asinBsinC得2sinBsinC=4sinAsinBsinC∴sinA=12由余弦定理及b2+c2-a2=8得2bccosA=8,则A为锐角,cosA=32,∴bc=833∴S=12bcsinA=233三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=ann.(1)求b1,b2,b3;(2)判断数列{bn}是否为等比数列,并说明理由;(3)求{an}的通项公式.解:(1)由条件可得an+1=2(n+1)nan.将n=1代入得,a2=4a1,而a1=1,所以,a2=4.将n=2代入得,a3=3a2,所以,a3=12.从而b1=1,b2=2,b3=4.(2){bn}是首项为1,公比为2的等比数列.由条件可得an+1n+1=2ann,即bn+1=2bn,又b1=1,所以{bn}是首项为1,公比为2的等比数列.4(3)由(2)可得ann=2n-1,所以an=n·2n-1.18.(12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=900,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.18.解:(1)由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=32.又BP=DQ=23DA,所以BP=22.作QE⊥AC,垂足为E,则QE//DC,且QE=13DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为V=13×QE×SΔABP=13×1×12×3×22×sin450=119.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数1513101655(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48该家庭使用了节水龙头后50天日用水量的平均数为x2=150(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.356估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).20.(12分)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,–2).所以直线BM的方程为y=12x+1或y=-12x-1.(2)当l与x轴垂直时,AB为MN的垂直平分线,所以∠ABM=∠ABN.当l与x轴不垂直时,设l的方程为y=k(x-2)((k≠0)),M(x1,y1),N(x2,y2),则x10,x20.代y=k(x-2)入y2=2x消去x得ky2–2y–4k=0,可知y1+y2=2k,y1y2=–4.直线BM,BN的斜率之和为kBM+kBN=y1x1+2+y2x2+2=x2y1+x1y2+2(y1+y2)(x1+2)(x2+2).①将x1=y1k+2,x2=y2k+2及y1+y2,y1y2的表达式代入①式分子,可得x2y1+x1y2+2(y1+y2)=2y1y2+4k(y1+y2)k=-8+8k=0所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以,∠ABM=∠ABN.21.(12分)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点.求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.解:(1)f(x)的定义域为(0,+∞),f′(x)=aex–1x.由题设知,f′(2)=0,所以a=12e2.从而f(x)=12e2ex-lnx-1,f′(x)=12e2ex-1x.当0x2时,f′(x)0;当x2时,f′(x)0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)当a≥1e时,f(x)≥exe-lnx-1.设g(x)=exe-lnx-1,则g′(x)=exe–1x当0x1时,g′(x)0;当x1时,g′(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)≥g(1)=0.因此,当a≥1e时,f(x)≥0.7(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4–4:坐标系与参数方程](10分)在直角坐标系xoy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ-3=0.(1)求C2的直角坐标方程;(2)若C1与C2有且仅有三个公共点,求C1的方程.解:(1)C2的直角坐标方程为(x+1)2+y2=4.(2)由(1)知C2是圆心为A(-1,0),半径为2的圆.由题设知,C1是过点B(0,2)且关于y轴对称的两条射线.记y轴右边的射线为l1,y轴左边的射线为l2.由于B在圆C2的外面,故C1与C2有且仅有三个公共点等价于l1与C2只有一个公共点且l2与C2有两个公共点,或l2与C2只有一个公共点且l1与C2有两个公共点.当l1与C2只有一个公共点时,A到l1所在
本文标题:2018年新课标全国1卷文数试题与答案解析
链接地址:https://www.777doc.com/doc-4910395 .html