您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 高中数学-1.2.2《组合》课件-新人教A版-选修2-3
新课标人教版课件系列《高中数学》选修2-31.2.2《组合》教学目标•1.理解组合的意义,掌握组合数的计算公式;•2.能正确认识组合与排列的联系与区别•教学重点:•理解组合的意义,掌握组合数的计算公式问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?236A甲、乙;甲、丙;乙、丙3情境创设从已知的3个不同元素中每次取出2个元素,并成一组问题二从已知的3个不同元素中每次取出2个元素,按照一定的顺序排成一列.问题一排列组合有顺序无顺序一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.排列与组合的概念有什么共同点与不同点?概念讲解组合定义:?组合定义:一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.排列定义:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.共同点:都要“从n个不同元素中任取m个元素”不同点:排列与元素的顺序有关,而组合则与元素的顺序无关.概念讲解思考一:aB与Ba是相同的排列还是相同的组合?为什么?思考二:两个相同的排列有什么特点?两个相同的组合呢?1)元素相同;2)元素排列顺序相同.元素相同概念理解构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤.思考三:组合与排列有联系吗?判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?有多少种不同的火车票价?组合问题排列问题(3)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?组合问题组合问题组合是选择的结果,排列是选择后再排序的结果.1.从a,b,c三个不同的元素中取出两个元素的所有组合分别是:ab,ac,bc2.已知4个元素a,b,c,d,写出每次取出两个元素的所有组合.abcdbcdcdab,ac,ad,bc,bd,cd(3个)(6个)概念理解从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示.mnC233C246C如:从a,b,c三个不同的元素中取出两个元素的所有组合个数是:如:已知4个元素a、b、c、d,写出每次取出两个元素的所有组合个数是:概念讲解组合数注意:是一个数,应该把它与“组合”区别开来.mnC1.写出从a,b,c,d四个元素中任取三个元素的所有组合abc,abd,acd,bcd.bcddcbacd练一练组合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb(三个元素的)1个组合,对应着6个排列你发现了什么?PPC333434344C第一步,()个;336A第二步,()个;333.434CAA根据分步计数原理,334343ACA从而34A对于,我们可以按照以下步骤进行组合数公式排列与组合是有区别的,但它们又有联系.一般地,求从n个不同元素中取出m个元素的排列数,可以分为以下2步:第1步,先求出从这n个不同元素中取出m个元素的组合数.mnC第2步,求每一个组合中m个元素的全排列数.mnA根据分步计数原理,得到:mmmnmnACA因此:!121mmnnnnAACmmmnmn这里m,n是自然数,且mn,这个公式叫做组合数公式.概念讲解组合数公式:(1)(2)(1)!mmnnmmAnnnnmCAmmmmnmnCAA!!()!mnnCmnm01.nC我们规定:从n个不同元中取出m个元素的排列数例1、计算:⑴47C⑵710C例2.甲、乙、丙、丁4支足球队举行单循环赛,(1)列出所有各场比赛的双方;(2)列出所有冠亚军的可能情况.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:例题分析32nnCA(3)已知:,求n的值⑴35(2)120例3.11CmnmCmnmn:求证,!!:)(!证明mnmnCmn)!1()!1(!111mnmnmnmmnmCmn)!1)((!)!1(1mnmnnmm.!)(!!Cmnmnmn1.理解组合的定义,区别排列与组合之间的关系.●思悟小结(2)同是从n个元素中取m个元素,但是组合一旦取完就结束,而排列还要继续进行排序(1)有序与无序的区别2.理解组合数的的定义与公式作业P27习题1.22、9(1)(2)(1)!mmnnmmAnnnnmCAm(1)!!()!mnnCmnm(2)mnC3.10名学生,7人扫地,3人推车,那么不同的分工方法有种;组合应用【练习】1.用m、n表示2.从8名乒乓球选手中选出3名打团体赛,共有种不同的选法;如果这三个选手又按照不同顺序安排,有种方法.例1.在产品检验中,常从产品中抽出一部分进行检查.现有100件产品,其中3件次品,97件正品.要抽出5件进行检查,根据下列各种要求,各有多少种不同的抽法?(1)无任何限制条件;(2)全是正品;(3)只有2件正品;(4)至少有1件次品;(5)至多有2件次品;(6)次品最多.解答:5100C(1)597C(2)23973CC(3)5510097CC(4)413223973973973CCCCCC,或(5)504132973973973CCCCCC23973CC(6)1.有10道试题,从中选答8道,共有种选法、又若其中6道必答,共有不同的种选法.2.某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况中,各有多少种不同的选法?(1)无任何限制条件;(2)正、副班长必须入选;(3)正、副班长只有一人入选;(4)正、副班长都不入选;(5)正、副班长至少有一人入选;(5)正、副班长至多有一人入选;练习:小结:至多至少问题常用分类的或排除法.例2从数字1,2,5,7中任选两个练习有不同的英文书5本,不同的中文书7本,从中选出两本书.(1)若其中一本为中文书,一本为英文书.问共有多少种选法?(1)可以得到多少个不同的和?(2)可以得到多少个不同的差?(2)若不限条件,问共有多少种选法?6个12个35种66种例4有12名划船运动员,其中3人只会划左舷,4人只会划右舷,其它5人既会划左舷,又会划右舷,现要从这12名运动员中选出6人平均分在左右舷参加划船比赛,有多少种不同的选法?例3在∠MON的边OM上有5个异于O点的点,ON上有4个异于O点的点,以这十个点(含O)为顶点,可以得到多少个三角形?NOMABCDEFGHI·········练习如图,在以AB为直径的半圆周上有异于A,B的六个点C1,C2,C3,C4,C5,C6,AB上有异于A,B的四个点D1,D2,D3,D4,问(1)以这10个点中的3个点为顶点可作多少个三角形?(2)以图中12个点(包括A,B)中的四个为顶点,可作多少个四边形?ABD1D2D3D4﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒C1C2C3C4C5C696979999CC练习(1)求的值组合数的性质mnmnnCC(1)11mmmnnnCCC(2)221717xxCC(2)求满足的x值11122mmmmnnnnCCCC(3)求证:①11111mmmmnnnnCCCC②129999CCC(4)求的值1617005或25111.排列与组合之间的区别在于有无顺序。组合中常见的问题有:选派问题、抽样问题、图形问题、集合问题、分组问题,解答组合问题的关键是用好组合的定义和两个基本原理,只选不排,合理分类、分步.2.理解组合数的性质3.解受条件限制的组合题,通常有直接法(合理分类)和间接法(排除法).●思悟小结P27习题1.210、11组合与组合数通过前面的学习,我们已经知道了组合的定义,组合数及其一些性质和组合与排列的关系。今天我们将在此基础上,继续学习它们的一些应用(一)组合数的公式及其性质:(1)(2)(1)!mmnnnmAnnnnmCAm!!()!mnnCmnm组合数性质1:mnmnnCC11mmmnnnCCC2:01nnnCC特别地:______,4A3A2918nnn则已知7__________3337410ACC0________,231010xCCxx则1,或5_______9910098999799CCC5050练习一129999CCC(5)求的值(1)(2)(3)(4)511练习精选:证明下列等式:11122110mmnmmnnnnCCCCC(2)例1.6本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;例题解读:例1.6本不同的书,按下列要求各有多少种不同的选法:(2)分为三份,每份2本;例題解读:点评:本题是分组中的“均匀分组”问题.一般地:将mn个元素均匀分成n组(每组m个元素),共有mmmmnmnmmnnCCCA种方法例1.6本不同的书,按下列要求各有多少种不同的选法:(3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;解:(3)这是“不均匀分组”问题,一共有种方法.12365360CCC(4)在(3)的基础上再进行全排列,所以一共有种方法.12336533360CCCA例题解读:例1.6本不同的书,按下列要求各有多少种不同的选法:(5)分给甲、乙、丙三人,每人至少1本例题解读:例3.(1)四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)根据分步计数原理:一共有种方法;44256(2)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有种方法;第二步:从四个不同的盒中任取三个将球放入有种方法,所以,一共有=144种方法24C34A24C34A例题解读例5.(辽宁卷9)一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有()A.24种B.36种C.48D.72种B例题解读:例6.(海南卷9)甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有()A.20种B.30种C.40种D.60种A1.5个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是.2.某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有种邀请方法.3.一个集合有5个元素,则该集合的非空真子集共有个.4.平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成个平行四边形.5.空间有三组平行平面,第一组有m个,第二组有n个,第三组有t个,不同两组的平面都相交,且交线不都平行,可构成个平行六面体455C9830222mntCCC22mnCC课堂练习:6.高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有种不同的调换方法7.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有种选派方法;(2)从中选派5名学生参加一次
本文标题:高中数学-1.2.2《组合》课件-新人教A版-选修2-3
链接地址:https://www.777doc.com/doc-4933846 .html