您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 27.2-相似三角形应用举例教案-新人教版
1相似三角形应用举例一、教学目标1.经历对实际问题的思考和讨论过程,会利用相似三角形解决高度测量问题.2.培养把实际问题转化为数学问题的能力,发展应用意识.三、教学过程(一)创设情境,导入新课从初一到现在,我们已经学了不少图形的知识,我们学过相交线平行线,我们学过三角形四边形,我们学过圆,这些天我们又学了相似三角形.这些关于图形的知识是怎么形成的呢?据说在很久很久以前,埃及的尼罗河水每年都会泛滥,两岸的田地就被淹没,水退后人们要重新划定田界,这便促使人们学会了计算简单图形边长、面积的方法,逐步形成了图形的知识.可见,图形知识是由于测量的实际需要而形成的.本节课我们要学的也与测量有关,我们要利用相似三角形的知识来解决一个测量问题,先来看这样一个实际问题.(二)尝试指导,讲授新课(师出示下图)这是旗杆,旗杆很高,怎么测量出旗杆的高度?请大家想出一个可行的测量办法.测量旗杆的高度有很多办法,其中有一种比较好的办法是利用相似三角形来测量,怎么利用相似三角形来测量?旗杆在地上会有影子,假如这条线是旗杆的影子.我们在旗杆影子的顶端立一根木杆,木杆在地上也会影子,这条线是木杆的影子.现在连结这两条线段,就构成了两个三角形,我们把三角形的顶点都标上字母。△ABC与△DEA相似,假如我们量出旗杆影子AC的长度为8米,木杆的高度为2米,木杆影子的长度为1.6米,那么旗杆高度是多少米?大家算一算.解:∵DE,AB是太阳光线,∴DE∥AB.∴∠BAC=∠D.而∠C=∠DAE=90°,∴△ABC∽△DEA.∴BCACEADA=,即BC821.6=.∴BC=10(米).因此,旗杆的高度为10米.BCEDA2(三)试探练习,回授调节1.填空:如图,在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋高楼的影长为90m,则这栋高楼的高度是m.2.填空:如图,测得BD=120m,DC=60m,EC=50m,则河宽AB=m.(四)归纳小结,本节课我们利用相似三角形解决了测量旗杆高度的问题,通过解决这个问题,不知道大家有没有意识到,其实测量可以分成两种,一种是可以直接测量的,譬如,我们的身高,教室的长度,马路的宽度,这些都可以直接测量.另一种是不能直接测量的,譬如,旗杆的高度,珠峰的高度,地球和月亮的距离,这些都不能直接测量.不能直接测量的问题怎么解决?(稍停)解决不能直接测量的问题,实质上是把不能直接测量的问题转化为可以直接测量的问题.(指准图)譬如,旗杆的高度是不能直接测量的,但它的影子,还有木杆及影子的长度都是可以直接测量,利用相似三角形可以求出旗杆的高度.不能直接测量就利用相似三角形间接地测量,这种想法很巧妙很高明,从中我们可以看到数学知识在解决实际问题中的作用,看到数学的价值,看到人的聪明才智.(五)布置作业:1.课本习题2.作业本教学反思:1.8m3m90m
本文标题:27.2-相似三角形应用举例教案-新人教版
链接地址:https://www.777doc.com/doc-4937571 .html