您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 药学 > 2012年浙江省宁波市中考数学试卷(解析版)
-1-2012年浙江省宁波市中考数学试卷一、选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.(2012•宁波)(﹣2)0的值为()A.﹣2B.0C.1D.22.(2012•宁波)下列交通标志图案是轴对称图形的是()A.B.C.D.3.(2012•宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A.B.C.D.14.(2012•宁波)据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为()A.1.04485×106元B.0.104485×106元C.1.04485×105元D.10.4485×104元5.(2012•宁波)我市某一周每天的最高气温统计如下:27,28,29,29,30,29,28(单位:℃),则这组数据的极差与众数分别为()A.2,28B.3,29C.2,27D.3,286.(2012•宁波)下列计算正确的是()A.a6÷a2=a3B.(a3)2=a5C.D.7.(2012•宁波)已知实数x,y满足,则x﹣y等于()A.3B.﹣3C.1D.﹣18.(2012•宁波)如图,在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为()A.4B.2C.D.9.(2012•宁波)如图是某物体的三视图,则这个物体的形状是()-2-A.四面体B.直三棱柱C.直四棱柱D.直五棱柱10.(2012•宁波)如图是老年活动中心门口放着的一个招牌,这个招牌是由三个特大号的骰子摞在一起而成的.每个骰子的六个面的点数分别是1到6,其中可以看见7个面,其余11个面是看不见的,则看不见的面上的点数总和是()A.41B.40C.39D.3811.(2012•宁波)如图,用邻边分别为a,b(a<b)的矩形硬纸板裁出以a为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a与b满足的关系式是()A.b=aB.b=aC.b=D.b=a12.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90B.100C.110D.121二、填空题(每小题3分,共18分)13.(2012•宁波)写出一个比4小的正无理数_________.14.(2012•宁波)分式方程的解是_________.15.(2012•宁波)如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是_________人.-3-16.(2012•宁波)如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=_________度.17.(2012•宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为_________.18.(2012•宁波)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为_________.三.解答题(本大题有8题,共66分)19.(2012•宁波)计算:.-4-20.(2012•宁波)用同样大小的黑色棋子按如图所示的规律摆放:(1)第5个图形有多少黑色棋子?(2)第几个图形有2013颗黑色棋子?请说明理由.21.(2012•宁波)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).(1)求反比例函数的解析式和点B的坐标;(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?22.(2012•宁波)某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队参加选拔.每位女生的身高统计如图,部分统计量如表:(1)求甲队身高的中位数;(2)求乙队身高的平均数及身高不小于1.70米的频率;(3)如果选拔的标准是身高越整齐越好,那么甲、乙两队中哪一队将被录取?请说明理由.-5-23.(2012•宁波)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sinA=,⊙O的半径为4,求图中阴影部分的面积.24.(2012•宁波)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下a0.80超过17吨但不超过30吨的部分b0.80超过30吨的部分6.000.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?-6-25.(2012•宁波)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是_________阶准菱形;②小明为了剪去一个菱形,进行了如下操作:如图2,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.-7-26.(2012•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.-8-参考答案与试题解析一.选择题(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求)1.考点:零指数幂。分析:根据零指数幂的运算法则求出(﹣2)0的值解答:解:(﹣2)0=1.故选C.点评:考查了零指数幂:a0=1(a≠0),由am÷am=1,am÷am=am﹣m=a0可推出a0=1(a≠0),注意:00≠1.2.考点:轴对称图形。专题:常规题型。分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.考点:概率公式。分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,白球的数目为2.解答:解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到白球的概率是:2÷3=.故选A.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.考点:科学记数法—表示较大的数。专题:常规题型。分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于104485有6位,所以可以确定n=6﹣1=5.解答:解:104485=1.04485×105.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.5.考点:极差;众数。专题:常规题型。分析:根据极差的定义,找出这组数的最大数与最小数,相减即可求出极差;根据众数的定义,找出这组数中出现次数最多的数即可.-9-解答:解:这组数中,最大的数是30,最小的数是27,所以极差为30﹣27=3,29出现了3次,出现的次数最多,所以,众数是29.故选B.点评:本题考查了极差与众数的概念,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.6.考点:立方根;算术平方根;幂的乘方与积的乘方;同底数幂的除法。专题:计算题。分析:根据同底数幂的除法、幂的乘方、平方根、立方根的定义解答.解答:解:A、a6÷a2=a6﹣2=a4≠a3,故本选项错误;B、(a3)2=a3×2=a6≠a5,故本选项错误;C、=5,表示25的算术平方根式5,≠±5,故本选项错误;D、,故本选项正确.故选D.点评:本题考查了立方根、算术平方根、幂的乘方与积的乘方、同底数幂的除法,是一道基础题.7.考点:非负数的性质:算术平方根;非负数的性质:偶次方。专题:常规题型。分析:根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.点评:本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.考点:锐角三角函数的定义。分析:根据cosB=,可得=,再把AB的长代入可以计算出CB的长.解答:解:∵cosB=,∴=,∵AB=6,∴CB=×6=4,故选:A.点评:此题主要考查了锐角三角函数的定义,关键是掌握余弦:锐角A的邻边b与斜边c的比叫做∠A的余弦.9.考点:由三视图判断几何体。分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:只有直三棱柱的视图为1个三角形,2个矩形.-10-故选B.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力及动手操作能力.10.考点:专题:正方体相对两个面上的文字。专题:常规题型。分析:先求出所有面上的点数的总和,然后减去看得见的7个面上的点数的和,然后根据有理数的混合运算计算即可得解.解答:解:三个骰子18个面上的数字的总和为:3(1+2+3+4+5+6)=3×21=63,看得见的7个面上的数字的和为:1+2+3+5+4+6+3=24,所以,看不见的面上的点数总和是63﹣24=39.故选C.点评:本题考查了正方体相对面上的文字,利用整体思想,把所有的面分成看得见的面与看不见的面两个部分是解题的关键.11.考点:圆锥的计算。分析:首先利用圆锥形圣诞帽的底面周长等于侧面的弧长求得小圆的半径,然后利用两圆外切的性质求得a、b之间的关系即可.解答:解:∵半圆的直径为a,∴半圆的弧长为∵把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,∴设小圆的半径为r,则:2πr=解得:r=如图小圆的圆心为B,半圆的圆心为C,作BA⊥CA于A点,则:AC2+AB2=BC2即:()2+()2=()2整理得:b=a故选D.点评:本题考查了圆锥的计算,解题的关键是利用两圆相外切的性质得到两圆的圆心距,从而利用勾股定理得到a、b之间的关系.12.考
本文标题:2012年浙江省宁波市中考数学试卷(解析版)
链接地址:https://www.777doc.com/doc-4950710 .html