您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > Black-Scholes-模型_beamer
Black-Scholes-.°d2010c1217F2010c1217F°d1/26ÆS:O£ÙK$Ä(Brownianmotion)ÅÈ©(stochasticintegrals)ItoÚn(Itolemma)Black-Scholes-..bgK]Ý]üÑÃ@|½dBlack-Scholes-îªÏ½dúªBlack-Scholes-.$^2010c1217F°d2/26ÙK$ÄESµÅL§(;F)§(R;B)üÿÝm§IR0L««m½lÑ꧷¡XÿNfStgt2IS:I!RIþÅL§I:=T=f0=t0t1:::tNg,lÑÅL§I:=[0;T];ëYÅL§éu½!,NS(!):I!R¡´»éu½t2I,NSt:!R¡tÅCþ2010c1217F°d3/26ÙK$ÄÅL§¡ÙK$ħXJ§÷v±e^(1)£Ð©^¤W0=0(2)£ÕáOþ¤éurstu,Wu WtÚWs Wr´pÕá(3)£Oþ©Ù¤Wt WsN(0;pt s)(4)£ëY´»¤éu?¿s2[0;T]Ú,ÑUé,jt sj§jWt(!) Ws(!)j¤á5µ(2)`²Wu Wtu tÝk'§u;t¤? Ã'2010c1217F°d4/26ÙK$ÄÙK$Ä´»3?¿:ÑØUém¦y²µâÙK$Ľ§·Wt+t WttN(0;1t)½?¿«mA=(a;b),t!0§ProbWt+t Wtt2A=Zbatp2expf x22tgdx=Zbtat1p2expf x22gdx!02010c1217F°d5/26ÙK$Ä&E(ÙK$Ä 6(filtration)½ÂfFWtgt0;FWt:=fWs;0stgWt´·A3fFWtgt0þÅL§§=éu8t2TWt2FWt;Wt3FWtþÿÞ~µ½¯A1=fWsa;s9g,A2=fW10bg,A12FW9A22FW10;A262FW9ÏFW9* [0;9]«mþ´»§A2u)3t=102010c1217F°d6/26ÙK$ÄÙK$Ä´y²µ0st,E[WtjFs]=E[(Wt Ws)+WsjFs]=E[Wt WsjFs]+E[WsjFs]=Ws:2010c1217F°d7/26ÙK$ÄÙK$ÄäMarkov5y²µ0st,â½ÂWt WsN(0;pt s),^xÚyOWsÚWt§y xݼêf(y x)=Z1 11p2(t s)e (y x)22(t s)d(y x))x½§y^Ýf(yjx)=Z1 11p2(t s)e (y x)22(t s)dy¤±y©Ùxk'§=E[WtjFs]=E[WtjWs]2010c1217F°d8/26ÅÈ©ëYÅL§wlÑÅL§4ål©§T=f0=t0t1:::tNg;t=ti+1 ti8i=0;:::;N 1:·½ÂStn St0:=N 1Xi=0(i;Si)(ti+1 ti)+N 1Xi=0(i;Si)(Wti+1 Wti)(1)i2[ti;ti+1]´«m[ti;ti+1]¥?¿:y3įK´§t!0ª£1¤4§l½ÂÅÈ©2010c1217F°d9/26ÅÈ©1Ú,éu?¿!2,=?¿´»§·^iùÈ©£Riemanintegral¤½ÂZT0(u;Su(!))du:=limN!1N 1Xi=0(i;Si)(ti+1 ti):´ÙK$ÄWt´»Ã?ém¦§iùÈ©Ø·^§¤±·IÚ\L24VgXJlimN!1E[(XN X)2]=0;·¡XNL24X,LªXNL2!X:2010c1217F°d10/26ÅÈ©·±y²N 1Xi=0(i;Si)(Wti+1 Wti)kL24éÙK$ÄÅÈ©½ÂZT0(u;Su)dWu:L2=limN!1N 1Xi=0(i;Si)(Wti+1 Wti):ù§ª£1¤4ÅÈ©ZT0dSu=ZT0(u;Su(!))du+ZT0(u;Su)dWu;½©LªdSu=(u;Su(!))du+(u;Su)dWu:2010c1217F°d11/26ÅÈ©éÙK$ÄüÈ©éżêÈ©ZT0(u)dWu:L2=limN!1N 1Xi=0(i)(Wti+1 Wti):EPN 1Xi=0(i)(Wti+1 Wti)#=0)EPZT0(u)dWu=0VPN 1Xi=0(i)(Wti+1 Wti)#=N 1Xi=02(i)(ti+1 ti)N!1!ZT02(u)du)VPZT0(u)dWu=ZT02(u)du:¤±43§ZT02(u)dWuN0;ZT02(u)du:2010c1217F°d12/26ÅÈ©éÙK$ÄüÈ©éÅþÈ©ZT0WudWu:L2=limN!1N 1Xi=0Wi(Wti+1 Wti)=12(W2T W20)+ 12T;Ù¥§i=(1 )ti+ti+1;i=1;:::;N 1;2[0;1],4iÀJk'=0,i=ti§=ItoÅÈ©ZT0WudWu=12(W2T W20) 12T:2010c1217F°d13/26ÅÈ©y²g´µÐm$§N 1Xi=0Wi(Wti+1 Wti)=12(W2tN W20) 12N 1Xi=0(Wti+1 Wti)2|{z}()+N 1Xi=0(Wi Wti)2|{z}()+N 1Xi=0(Wti+1 Wi)(Wi Wti)|{z}()(2)2010c1217F°d14/26ÅÈ©y²g´£Y¤µ|^ÙK$Ľ§کÙMomentOª§XN(0;)E[Xk]=(k 1)2E[Xk 2]k=2n0k=2n+1gOªmý4()!12T()!N 1Xi=0(i ti)=T()!0y²L§¥(Ø(dWt)2=dt;dtdWt=02010c1217F°d15/26ItoÚn£ÙK$Ĥ½nµItoÚn£ÙK$Ĥf(t;x1;:::xn)´[0;T]RnþëY¼ê§ ÙdÚdêëYfXi(t)gt,i=1;:::;n´nÅL§§÷vdXi(t)=i(t;Xi(t))dt+i(t;Xi(t))dWt;=§Ñ´dÓÙK$ĤÚåÅL§§@of(t;X1(t);:::Xn(t))´ÅL§§÷vdf=ftdt+nXi=1fXidXi+12nXi=1nXj=1fXifXjdXidXj;Ù¥§fxL«@f@x,dXidXj=ijdt:y²µÑ¤ÆSN§Ñ2010c1217F°d16/26ItoÚn£ÙK$Ĥ~1µdSt=Stdt+StdWtS0=s)´St=sexp( 122)t+Wt; ÏE[St]=set:2010c1217F°d17/26ItoÚn£ÙK$Ĥ~1µy²µXt:=lnSt,$^ItoÚn§dXt=1StdSt 121S2t(dSt)2=Stdt+StdWt 121S2t2S2tdt=( 122)dt+dWt)St=sexp( 122)t+Wt:)E[St]=set:2010c1217F°d18/26ItoÚn£ÙK$Ĥ~2µdS1t=rS1tdt+1S1tdWt;S10=adS2t=rS2tdt+2S2tdWtS20=b¦µdS1tS2t.â~1(ØS1t=aexp(r 1221)t+1WtS2t=bexp(r 1222)t+2Wt)S1tS2t=abexp12(22 21)t+(1 2)Wt:2010c1217F°d19/26ItoÚn£ÙK$Ĥ~2(Y)dS1tS2t=1S2tdS1t S1tS2tdS2t 1(S2t)2dS2tdS1t+S1t(S2t)3(dS2t)2=S1tS2t(rdt+1dWt) S1tS2t(rdt+2dWt) S1tS2t12dt+S1tS2t22dt)dS1tS2t=S1tS2t[2(2 1)dt+(1 2)dWt]:2010c1217F°d20/26Black-Scholes-..b½|ÃÞëY´|Çr´~êü«yúxÝ]B(t;T)=expf r(T t)g)dB=rBdt¦ºxÝ]§vkù|dSt=Stdt+StdWt2010c1217F°d21/26Black-Scholes-.â~1(J)St=St0exp( 122)t+Wt:lnStSt tN( 122)t;2t)E[St]=St0et:²L¿ÂÙK$Ä´»3?¿:ÑØUém¦ÙK$ÄMarkov5ItoÅÈ©2010c1217F°d22/26Black-Scholes-.îªCalltdCalle[S;K;t;T]=f(t;St)$^ItoÚn§df(t;S)=ft(t;S)dt+fS(t;S)dS+12fSS(t;S)(dS)2=ftdt+fS(Sdt+SdWt)+12fSSS22dt=[ft+SfS+12fSSS22]dt+SfSdWt:t=Tf(T;S)=maxf0;ST Kg2010c1217F°d23/26Black-Scholes-.½|ä5§¤±îªCall±dBÚS|¤gK]Ý]üÑftgt2[0;t]=f1t;2tgt2[0;t]E.´ÅL§=(1;2):[0T]!R2L§1t,2t3Ft þÿ²L¿ÂµÝ]ûüÄutc&Ed(Value)L§V(t):=1tB(t;T)+2tSt;8t2[0;T]gK]Ý]üÑ,Ý]|ÜdCzd|ÇÈ\Ú¦dCzÚå§vk]7ÑÚÝ\§dV(t)=1tdB(t;T)+2tdStV(T)=maxf0;ST Kg:2010c1217F°d24/26Black-Scholes-.âÃ@|½dK8t2[0;T],f(t;St)=V(t)df(t;St)=dV(t))f(t;St)=1tB(t;T)+2tSt(ft+SfS+12fSSS22)dt+SfSdWt=1trBdt+2tSdt+2tSdWt2=fS1B=f(t;S) 2S=f SfS1trB+2tS=ft+SfS+12fSSS22)ft+SrfS+12fSSS22 rf=0(3)f(T;S)=maxf0;ST Kg(4)2010c1217F°d25/26Black-Scholes-.) ©§§=ª£3¤Calle[S;K;t;T]=StN(d1) Ke (T t)rN(d2)d1=2=lnStKe (T t)r122(T t)pT tâPutcallparity,Pute[S;K;t;T]=Calle[S;K;t;T] S+Ke (T t)r=Ke (T t)rN( d2) StN( d1):2010c1217F°d26/26
本文标题:Black-Scholes-模型_beamer
链接地址:https://www.777doc.com/doc-4954 .html