您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 七年级数学不等式练习题及标准答案
一.选择题(共20小题)1.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A.ab>0B.a+b<0C.<1D.a﹣b<02.据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A.t<17B.t>25C.t=21D.17≤t≤253.若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.3﹣x>3﹣yC.x+3>y+2D.4.如果a<b<0,下列不等式中错误的是()A.ab>0B.a+b<0C.<1D.a﹣b<05.如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A.1个B.2个C.3个D.4个7.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A.B.C.D.8.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>29.不等式>1的解集是()A.x>﹣B.x>﹣2C.x<﹣2D.x<﹣10.不等式2x>3﹣x的解集是()A.x>3B.x<3C.x>1D.x<111.不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个12.不等式12﹣4x≥13的正整数解的个数是()2/25A.0个B.1个C.2个D.3个13.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>814.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A.a=b>cB.b>a>cC.a>c>bD.c>b>a15.根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A.a<cB.a<bC.a>cD.b<c16.不等式组的解集在数轴上表示正确的是()A.B.C.D.17.不等式组的解集在数轴上表示正确的是()A.B.C.D.18.不等式组的整数解共有()A.3个B.4个C.5个D.6个19.不等式组的正整数解的个数是()A.1个B.2个C.3个D.4个20.若使代数式的值在﹣1和2之间,x可以取的整数有()A.1个B.2个C.3个D.4个二.填空题(共2小题)21.关于x的不等式组的解集是x>﹣1,则m=_________.3/2522.若不等式组的解集是﹣1<x<1,则(a+b)2009=_________.三.解答题(共8小题)23.解不等式组把解集表示在数轴上,并求出不等式组的整数解.24.解不等式组,并写出不等式组的整数解.25.解不等式组,并求其整数解.28.解不等式组:,并判断是否满足该不等式组.30.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲45乙752014年06月01日1051948749的初中数学组卷参考答案与试卷解读一.选择题(共20小题)1.(2009•枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A.ab>0B.a+b<0C.<1D.a﹣b<0考点:不等式的定义;实数与数轴.分析:先根据数轴上点的特点确定a、b的符号和大小,再逐一进行判断即可求解.4/25解答:解:由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,A、∵a<b<0,∴ab>0,故选项正确;B、∵a<b<0,∴a+b<0,故选项正确;C、∵a<b<0,∴>1,故选项错误;D、∵a<b<0,∴a﹣b<0,故选项正确.故选C.点评:本题考查的知识点为:两数相乘,同号得正;同号两数相加,取相同的符号;两数相除,同号得正.确定符号为正后,绝对值大的数除以绝对值小的数一定大于1较小的数减较大的数一定小于0.2.(2005•丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A.t<17B.t>25C.t=21D.17≤t≤25考点:不等式的定义.分析:读懂题意,找到最高气温和最低气温即可.解答:解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故选D.点评:解答此题要知道,t包括17℃5/25和25℃,符号是≤,≥.3.(2009•临沂)若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.3﹣x>3﹣yC.x+3>y+2D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2008•恩施州)如果a<b<0,下列不等式中错误的是()A.ab>0B.a+b<0C.<1D.a﹣b<0考点:不等式的性质.分析:根据不等式的6/25性质分析判断.解答:解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.点评:利用特殊值法验证一些式子错误是有效的方法.5.(2006•镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.专题:压轴题.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<0∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查7/25了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A.1个B.2个C.3个D.4个考点:不等式的解集.分析:分别解不等式就可以得到不等式的解集,就可以判断各个选项是否成立.解答:解:①不等式2x﹣1<0的解集是x<包括0,正确;②不等式3x﹣1>0的解集是x>不包括,正确;③不等式﹣2x+1<0的解集是x>,不正确;④不等式组的解集是x>2,故不正确;故选B.点评:解答此题的关键是分别解出各不等式或不等式组的解集,再与已知相比较即可得到答案正确与否,解不等式是解决8/25本题的关键.7.(2009•河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9/258.(2007•武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A.x<4B.x<2C.2<x<4D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2008•无锡)不等式>1的解集是()10/25A.x>﹣B.x>﹣2C.x<﹣2D.x<﹣考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时乘以﹣2,不等号的方向改变.得到不等式的解集为:x<﹣2.解答:解:不等式3x+2≥5得,3x≥3,解得x≥1.故选C.点评:本题考查不等式的性质3,在不等式的两边乘以﹣2,不等号要改变方向.此题容易错解选B.10.(2007•双柏县)不等式2x>3﹣x的解集是()A.x>3B.x<3C.x>1D.x<1考点:解一元一次不等式.专题:计算题.分析:由一元一次不等式的解法知:解此不等式只需移项,系数化1两步即可得解集.解答:解:不等式2x>3﹣x移项得,2x+x>3,即3x>3,系数化1得;x>1.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符11/25号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.(2007•枣庄)不等式2x﹣7<5﹣2x正整数解有()A.1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式12﹣4x≥13的正整数解的个数是()A.0个B.1个C.2个D.3个考点:一元一次不等12/25式的整数解.分析:首先确定不等式组的解集,然后再找出不等式的特殊解.解答:解:移项得:﹣4x≥13﹣12,合并同类项得:﹣4x≥1,系数化为1得:x≤﹣,所以不等式12﹣4x≥13没有正整数解.故选A.点评:正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.13.“x的2倍与3的差不大于8”列出的不等式是()A.2x﹣3≤8B.2x﹣3≥8C.2x﹣3<8D.2x﹣3>8考点:由实际问题抽象出一元一次不等式.分析:理解:不大于8,即是小于或等于8.解答:解:根据题意,得2x﹣3≤8.故选A.点评:应注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.14.(2008•赤峰)用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A.a=b>cB.b>a>cC.a>c>bD.c>b>a13/25考点:一元一次不等式的应用.专题:压轴题.分析:根据图示三种物体的质量列出不等关系式是关键.解答:解:依据第二个图得到a+c=b+c⇒a=b,依图一得:a+c+c<a+b+c,则b>c,则a=b>c;故选A.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.(2009•鄂州)根据下面两图所示,对a、b、c三种物体
本文标题:七年级数学不等式练习题及标准答案
链接地址:https://www.777doc.com/doc-4960986 .html