您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 近5年高考数学试卷分析
近几年高考数学试卷分析从江西高考来说,总体题型与分值大致不变。近几年高考试卷变化不是很大,分,60分,总计5道选择题,每题12年考卷依然属于大纲版。2010年到2006分,其中只有两到选择题难度中等,其他客观4道题,每题4分,共16填空题4大题一共六道题。题都是简单题。两到难题,分。48共分,12每题道基础题,,圆锥曲线三者选其分。一般来说难题都是数列,函数(包括导数)14分加12二。剩下的一部分会出一个比较简单的大题。难度系数大致如下表格。年江西省六年数学高考卷难度系数2010年~2005一、理科文科年份难度系数平均分难度系数平均分0.5176.420.3958.1320050.4669.220.4465.620060.5989.240.4973.5820070.4669.370.4262.9820080.4669.010.4263.120090.5581.990.5277.432010每年最后一题难度较难度相对其他省份来说较大些,从表格看,2生建议放弃第高。非超好学问。二、六年高考考点分布(理科)201020092008200720062005①复数的①复数的①复数的①集合②①集合②概念②复复数的概概念②复概念②弧交集③函补集③并1数的乘法念数的乘法度制数集与除法和除法①复数的①复数的①集合②函数的极概念②复概念②复交集③函函数集合2限数的乘法数的乘法数和除法和除法①点到直线的距离①集合②圆的标两角和差准方程与含绝对值②补集③不等式的函数余的正弦、3的不等式并集④交解法一般方程弦、正切集③充分条件和必要条件①正弦①平面向函数、量的数量余弦函数的图积②抛物数列的极函数的极二项式定二项式定像与性质线及其标4限限理理②同角三准方程③角函数的抛物线的基本关系简单几何性质①不等式的解法②正弦函数、导数的概基本导数导数的几余弦函数念③利用数列周期函数5公式何意义的图像与导数研究性质函数的单调性和极值①正弦函①向量②①椭圆及余弦函数、向量的加其标准方数的图像①集合②二项式定法与减法程②椭圆与性质②简单的线函数6理③平面向的简单几正切函数性规划量的数量何性质的图像和积性质①三垂线定理及其①函数的①平面向逆定理②①向量②奇单调性、量的数量直线和平余弦定二项式定等差数列偶性②导积②椭圆面垂直的7n理理项的前数的概念的简单几判定与性和公式③导数的何性质质③直线几何意义和平面所成的角①点到直线的距离二项式定二项式定函数的极①球②棱数列8②不等式锥理理限的解法①正多面①椭圆及体②棱锥①函数②其标准方①双曲线③直线和互为反函程②椭圆及其标准①球②两平面平行数的函数不等式的的简单几方程②圆平面垂直的判定和9图像间的性质何性质③的标准方的判定与性质④异关系③周圆的标准程和一般性质面直线所期函数方程和一方程成的角⑤般方程二面角及其平面角①等可能事件的概率②分类组①排列、异面直线等可能事(新概念计数原理合②等可指数函数10所成的角件的概率问题)与分步计能事件的数原理③概率等差数列及其通项①平面向①函数的量的数量奇单调性、积②二倍偶性②周角的正弦期函数③等可能事(新概念等可能事棱锥正切余弦、11导数的几件的概率问题)件的概率③正弦函何意义数余弦函①利用导数的图像数研究函与性质数的单调①等差数性和极值列及其通②基本导导数的几函数的运项公式②数公式③函数函数12何意义用组合③随充分条件机事件的和必要条概率件①函数的①平面向奇单调性、平面向量量的数量平面向量①函数②数列的极偶性②对的坐标表积②线段13的数量积反函数限数③对数示的定比分的运算性点质①排列②排列数公①对数函简单的线①棱锥②不等式的式③组合数列数②反函性规划问14球性质数题④组合数公式①抛物①向量线及其标双曲线及不等式的②向量的(立体图准方程②其标准方(无理解法棱柱15加法与减形的展开)抛物线的程不等式)法简单几何性质①双曲线①圆的标及其标准准方程和①圆的方程②椭①圆的标一般方程标准方程圆及其标①棱锥②准方程与②点到直①棱柱②与一般方准方程③点到平面一般方程线的距离16棱锥程②点到椭圆的简的距离②点到直③直线方直线的距单几何性线的距离程的点斜离质④双曲式和两点线的简单式几何性质①几种常见函数的①同角三①两个函导数②两角函数间数的和、个函数的的基本关商积、差、①函数的积、差、和、系②二倍的导数②余①正弦、连续性②商的导数角的正弦、利用导数不等式的弦的诱导③利用导17不等式③正切余弦、研究函数解法公式②数研究函不等式的③正弦函的单调性解法数的单调余弦函数、和极值③性和极值数的图像不等式的④函数的和性质解法最大值和最小值①等可能①等可能①等可能①等可能①平面向事件的概事件的概①几种常事件的概事件的概量的数量率②离散率②离散见函数的率②离散率②离散积②几种型随机变型随机变导数②正型随机变型随机变常见函数量的分布量的分布余弦函数、量的分布量的分布的导数③18列③离散列③离散弦函数的列③离散列③离散两个函数型随机变型随机变图像与性型随机变型随机变的和、差、量的期望量的期望质量的期望量的期望商的导积、值和方差值和方差值和方差数值和方差①基本导①正弦定①正弦定①等差数①相互独①相互独数公式②理②两角列及其通立事件同理②两角立事件同利用导数和与差的项公式②时发生的和与差的时发生的研究函数正弦、余等比数列概率②离正弦、余概率②离的单调性19正切③弦、及其通项散型随机正切③弦、散型随机和极值③同角三角公式③不变量的期正切函数变量的期函数的最函数的基等式的证望值和方的图像和望值和方大值和最性质差明差本关系小值①两个平①直线和①直线和面垂直的①直线和平面平行①直线和平面垂直判定与性平面平行的判定与平面垂直的判定与①三垂线质②直线的判定与性质②直的判定与性质②三定理及其和平面垂性质②直线和平面性质②两垂线定理逆定理②直的判定线和平面垂直的判个平面垂及其逆定线面垂直与性质③垂直的判定与性质直的判定理③二面的性质③20三垂线定定与性质③三垂线与性质③角及其平点到平面理及其逆③直线和定理及其点到平面面角④余的距离④定理④二平面所成逆定理④的距离④弦定理⑤二面角及面角及其的角④点二面角及二面角及直线和平其平面角平面角⑤到平面的其平面角其平面角面所成的棱锥⑥棱距离⑤棱锥⑥角柱棱柱①双曲线①双曲线①椭圆及及其标准①双曲线及其标准其标准方①椭圆及方程②双及其标准方程②线程②曲线其标准方曲线的简方程②曲①数学归段的定比与方程的程②椭圆单几何性线与方程纳法②数分点③由概念③椭的简单几质③由已的概念③学归纳法21已知条件圆的简单何性质③知条件列由已知条的运用③列出曲线几何性质由已知条出曲线方件列出曲数列方程④直余④正弦、件列出曲程④圆的线方程④线的点斜弦函数的标准方程线方程平面向量式和两点图像和性和一般方的数量积式质程①利用导①导数的数研究函①等比数①数列②几何意义数的单调列及其通数学归纳①数列②①数列②②几种常性和极值项②数学法③数学等差数列等比数列见函数的②两个函归纳法③22归纳法的及其通项及其通项导数③点数的和、数学归纳运用④不③数论公式到直线的商积、差、法的运用等式的证(向量距离的导数③④不等式明的数量积)的证明不等式的证明2013年开始到2011从选题型有小幅度改变,江西高考开始改为新课标版。年,个变为十个,填空题多了两道选答题。一般是参数方程的题和12择题由原来的道大题的3一般都会有,个题。其他省市包括全国卷6不等式的题。大题依旧是选答题。与课本选修一致。江西高考依旧带有江西一贯的特色,简单的太简单。难的太难。最后一题往往超乎人的想象。总体来说,数学高考卷以函数为核心,立体三角函数,分左右。20到10另外各知识点均在分。80到60总体分值大概几何,概率论均属于中等题目,属于必拿分题。复数,程序,集合,以及计算题属于送分题。年江西高考数学知识点分布2012(2)5文(1)理集合24)文29(理(3)(10)(21)文(2)(3)(10)(21)理函数概念与初等函数Ⅰ理三角函数与解三角形(4)(9)(16)22文(4)(14)(17)18)文(12)(20)13(文(20)理平面向量(8)(13)(17)22文(12)(13)(16)理数列10)文(2)(11)29(文)(21)②(8)(9)(15理不等式17)文(7)(19)5(文(10)理立体几何(19)12理空间向量与立体几何(8)(14)(20)22文(7)(13)(20)理平面解析几何(15)5文(14)理算法二项式定理(计数原理、排列组合(5)5理)(6)(18)17文(9)(18)理统计与概率、随机变量及其分布列、统计案例(5)5理常用逻辑用语(21)14文(21)理导数及其应用(1)5文复数(6)理推理与证明(5)5文5①15理坐标系与参数方程)5②(15理不等式选讲(11)5理定积分;题5、1如第,年江西高考数学整套试卷既有一眼就能看出答案的题2013有稍动笔有考虑问题较周密、运算能力较;题13、12、11、8、6、3、2如第,就能做对的题、14、9如第,强的情况下就能做出的题也有在数学素质高、数学能力强的;题18试题很好的区分度对区分数学素.题等21、20、15、10如第,情况下才能做出的题21、20、15、10第,质和能力不同的学生起到了很好的作用这,分的总分34有,题多分的差别。20三道题一般有总体来说,各省市试卷大同小异,客观题简单,主观题一半简单,一半偏差生偏客观题与主观题不同层次的学生做题目标不一样。对学生要求偏大。难。高数数学考试对学生在计算优生偏除最后一题最后一问之外的所有题。第一问。学生在平时应当熟练掌握知识准确度以及分析严谨度与做题速度上有较高要求。点,加强思维活跃度,提升做题速度等各方面能力。
本文标题:近5年高考数学试卷分析
链接地址:https://www.777doc.com/doc-4967008 .html