您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 第四章习题重庆大学信号与信统杨浩版答案
4-1第四章习题4-1以下各周期序列的周期为N,根据离散傅里叶级数的定义,证明:①)(~)(~kXWmnxkmN②)(~)(~**kXnx③)(~)(~**kXnx证明:10)(~)(~NnnkNWnxkX10)(~)(~NknkNWkXnx①)(~)(~kXWmnxkmN10)(~)](~[NnnkNWmnxmnxDFSmkNNnkmnNWWmnx10)()(~10)()(~NnkmnNmkNWmnxW)(~kXWmkN②)(~)(~**kXnx10**)(~)](~[NnnkNWnxnxDFS10*])(~[NnnkNWnx*10)(])(~[NnknNWnx)(~*kX4-2③)(~)(~**kXnx10**)(~)](~[NnnkNWnxnxDFS10*])(~[NnnkNWnNx10)(*])(~[NnknNWnNx10))((*])(~[NnknNNWnNx10*)(])(~[NnknNNWnNx)(~*kX4-2若)(~nx为实周期序列,证明其离散傅里叶级数的系数)(~kX具有以下对称关系:①)](~Re[)](~Re[kXkX②)](~Im[)](~Im[kXkX③)(~)(~kXkX④)](~arg[)](~arg[kXkX证明:)(~)(~*nxnx①)](~Re[)](~Re[kXkX10*10*])(~[)(~NnnkNNnnkNWnxWnx)(~])(~[*10*)(kXWnxNnknN即)(~)(~*kXkX)](~Re[)](~Re[)](~Re[*kXkXkX②)](~Im[)](~Im[kXkX4-3)](~Im[)](~Im[)](~Im[*kXkXkX③)(~)(~kXkX)(~)(~)(~*kXkXkX④)](~arg[)](~arg[kXkX)](~arg[)](~arg[)](~arg[*kXkXkX4-3)(~nx是一个周期为N的周期序列,已知其离散傅里叶级数的系数为)(~kXN。)(~nx也可以看成周期为2N的周期序列,设其离散傅里叶级数的系数为)(~2kXN,试用)(~kXN确定)(~2kXN。解:10)(~)(~NnnkNNWnxkX12022)(~)(~NnnkNNWnxkX122102)(~)(~NNnnkNNnnkNWnxWnx222222knNknjnkjnkNWeeW102)(102)(~)(~NnknNNNnknNWnNxWnx1022102)(~)(~NnknNkNNNnknNWnxWWnx1022)(~)1(NnknNkNNWnxW)2(~])1(1[)2(~]1[2kXkXWNkNkNN为奇数为偶数kkkXN0)2(~24-4已知)(~nx是一个周期为N的周期序列,其离散傅里叶级数的系数为)(~kXN,)(~ny是4-4一个周期为M的周期序列,其离散傅里叶级数的系数为)(~kYM。设)(~)(~)(~nynxnw显然①证明)(~nw也是周期序列,周期为MN。②设)(~kWMN是)(~nw的离散傅里叶级数的系数,试用)(~kXN和)(~kYM确定)(~kWMN。解:①)(~)(~)(~MNnyMNnxMNnw)(~)(~)(~nwnynx②设)(~kWMN是)(~nw的离散傅里叶级数的系数,试用)(~kXN和)(~kYM确定)(~kWMN。10)(~)(~MNnnkMNMNWnxkX将这个和式看成M个N点序列的和式个和式MMNNMnnkMNNNnnkMNNnnkMNMNWnxWnxWnxkX1)1(1210)(~)(~)(~)(~个和式MNnknNMMNNnknNMNNnnkMNWnNMxWnNxWnx10))1((10)(10))1((~)(~)(~个和式MNnnkMNNkMMNNnnkMNNkMNNnnkMNWnxWWnxWWnx10)1(1010)(~)(~)(~]1[)(~)1(10NkMMNNkMNNnnkMN1010)(~MllNkMNNnMknNWWnx因为其它的整倍数为010MkMWMllNkMN即)(10lMkMWMllNkMN4-5)()(~)(~)(~10lMkMkXMWnxkXNMNnnkMNMN同理可得10)(~)(~MNnnkMNMNWnykY将这个和式看成N个M点序列的和式个和式NMNMNnnkMNMMnnkMNMnnkMNMNWnyWnyWnykY1)1(1210)(~)(~)(~)(~个和式NMnknMNMNMnknMMNMnnkMNWnMNyWnMyWny10))1((10)(10))1((~)(~)(~个和式NMnnkMNMkNMNMnnkMNMkMNMnnkMNWnyWWnyWWny10)1(1010)(~)(~)(~]1[)(~)1(10MkNMNMkMNMnnkMN1010)(~NllMkMNMnNknMWWnx因为其它的整倍数为010NkNWNllMkMN即)(10lNkNWNllMkMN)()(~)(~)(~10lNkNkYNWnykYMMNnnkMNMN)(~)(~)(~kYkXkWMNMNMN)()(~)()(~NlkNkYNlMkMkXMMN4-5已知)(~nx是一个周期为N的周期序列,其离散傅里叶级数的系数为)(~kXN。试用)(~kXN确定以下各序列离散傅里叶级数的系数。4-6①)(~0nnx,0n为常数。②)1(~)(~nxnx。③)2(~)(~Nnxnx,N为偶数。解:①)(~0nnx,0n为常数。1000)(~)](~[NnnkNWnnxnnxDFS)(~)(~00010)(0kXWWnnxWNknNNnknnNknN②)1(~)(~nxnx。)]1(~[)](~[)]1(~)(~[nxDFSnxDFSnxnxDFS)(~)(~kXWkXNkNN)1)((~kNNWkX③)2(~)(~Nnxnx,N为偶数。)]2(~[)](~[)]2(~)(~[NnxDFSnxDFSNnxnxDFS)(~)(~2kXWkXNkNNN))1(1)((~kNkX为奇数kkXN)(~24-6)(nx是个N点序列,试证明:NNnNxnx))(())((证明:因为Nnx))((是N点序列)(nx的周期延拓序列,即Nnx))((是周期为N的序列。所以Nnx))((也是周期为N的序列,则有NNnxnNx))(())((4-74-7)(kX为N点序列)(nx的N点离散傅里叶变换,①证明如果)(nx满足关系式)1()(nNxnx则0)0(X②证明当N为偶数时,如果)1()(nNxnx则0)2(NX证明:①因为)()()(10kRWnxkXNNnnkN证明如果)(nx满足关系式)1()(nNxnx则)())1(()(10kRWnNxkXNNnnkNN)()())1(()1(10))(1()1(kXWkRWnNxWkNNNNnknNNNkNN当0k时,有)0()0(XX则0)0(X②因为)()()(10kRWnxkXNNnnkN当N为偶数时,如果)1()(nNxnx4-8则)()1()(10kRWnNxkXNNnnkN)()())1(()1(10))(1()1(kXWkRWnNxWkNNNNnknNNNkNN当2Nk时,有)2()2()1(2NXWNXNNN因为N为偶数,N-1则为奇数,而1)1()1()1(2NNNNW则)2()2(NXNX即0)2(NX4-8已知)(nx是个4点序列,)(nh也是个4点序列,如题图4-1所示,①求)(nx与)(nh的线性卷积。②求)(nx与)(nh的4点圆周卷积。③用补零的方式将)(nx和)(nh延长成7点序列,再做)(nx与)(nh的7点圆周卷积。解:①求)(nx与)(nh的线性卷积。mmnhmxny)()()(第一步画出)(mx与)(mh的草图;第二步画出)(mh的草图;第三步画出)(mnh的草图;)(nx011n题图4-12230123n)(nh12m)(mx)(mhm0-1-2-312)(mhmnn-1n-2n-34-9分析在给定n的条件下,)(mx与)(mnh在区间),(上的非零值交点。当0n时,)(mx与)(mnh没有非零值交点,所以0)(ny当0n,且3n时,即30n,)(mx与)(mnh在区间],0[n上有非零值交点,所以nmmnhmxny0)()()(1)()()0(00mmhmxy3102()1()1()0()1()()1(10hxhxmhmxym6222)0()2()1()1()2()0()2()()2(20hxhxhxmhmxym)0()3()1()2()2()1()3()0()3()()3(30hxhxhxhxmhmxym81241当3n,且33n时,即36n,)(mx与)(mnh在区间]3,3[n上有非零值交点,所以33)()()(nmmnhmxny7142)1()3()2()2()3()1()4()()4(31hxhxhxmhmxym422)2()3()3()2()5()()5(32hxhxmhmxym1)3()3()6()()6(33hxmhmxym当6n时,)(mx与)(mnh没有非零值交点,所以0)(ny4-10②求)(nx与)(nh的4点圆周卷积。3043))(()()(mmnhmxnx第一步画出)(mx与)(mh的草图;第二步画出4))((mh的草图;第三步画出4))((mh的草图;第四步画出4))((mnh的草图;计算圆周卷积和式:81421)0(3x72221)1(3x71222)2(3x81241)3(3x③用补零的方式将)(nx和)(nh延长成7点序列,再做)(nx与)(nh的7点圆周卷积。6074))(()()(mmnhmxnx第一步)(mx与)(mh补零延长为7点序列;第二步画出7))((mh的草图;第三步画出7))((mh的草图;第四步画出7))((mnh的草图;011223012312m)(mx)(mhm0-1-2-312m01231m21-1-2-34))((mh-41212344))((mnh012301230123n=0n=1n=2n=301122301231m)(mx)(m
本文标题:第四章习题重庆大学信号与信统杨浩版答案
链接地址:https://www.777doc.com/doc-4970735 .html