您好,欢迎访问三七文档
圆与二次函数综合题1.抛物线交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,-3).(1)求二次函数的关系式;(2)在抛物线对称轴上是否存在一点P,使P到B、C两点距离之差最大?若存在,求出P点坐标;若不存在,请说明理由;(3)平行于x轴的一条直线交抛物线于M、N两点,若以MN为直径的圆恰好与x轴相切,求此圆的半径.2.如图平面直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(O,32).(1)求点C的坐标.(2)抛物线y=ax2+bx+c过点0,A两点,且顶点在正比例函数y=33x的图象上,求抛物线的解析式.(3)过圆心C作平行于x轴的直线DE,交⊙C于D、E两点,试判断D、E两点是否在(2)中的抛物线上;(4)若(2)中的抛物线上存在点P(x0,y0),满足∠APB为钝角,求x0的取值范围.3.如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(A点在B点左侧),与y轴交于点C.(1)求抛物线的解析式及A、B、C三点的坐标(2)若直线y=kx+b经过C、M两点,且与x轴交于点D,证明四边形CDAN是平行四边形.(3)点P在抛物线的对称轴x=1上运动,请探索,在x轴上方是否存在这样的点P,使以P为圆心的圆经过A、B两点,且与直线CD相切,若存在,请求出点P的坐标,若不存在,请说明理由.4.已知:如图,抛物线的图象与x轴分别交于A(-3,0),B(1,0)两点,与y轴交于点C(0,3),⊙M经过原点O及点A,C,点D是劣弧OA上一动点(D点与A,O不重合).(1)求抛物线的顶点E的坐标;(2)求⊙M的面积;(3)连CD交AO于点F,延长CD至G,使FG=2,试探究,当点D运动到何处时,直线GA与⊙M相切,并请说明理由.5.在平面直角坐标系中,抛物线经过O(0,0)、A(4,0)、E(3,)三点(1)求此抛物线的解析式(2)以OA的中点M为圆心,OM长为半径作⊙M,在(1)中的抛物线上是否存在这样的点P,过点P作⊙M的切线l,且l与x轴的夹角为30°,若存在,请求出此时点P的坐标;若不存在,请说明理由.(注意:本题中的结果可保留根号)6.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案1、(1)将C(0,-3)代入,得c=-3.将c=-3、B(3,0)代入,得9a+3b-3=0.①因为x=1是抛物线的对称轴,所以.②将②变形后代入①得a=1,b=-2.所以二次函数的关系式是.(2)AC与对称轴的交点P即为到B、C的距离之差最大的点.因为PA=PB,所以点P到B、C两点距离之差就等于|PA-PC|.由于三角形的两边之差小于第三边,所以只有当点P、C、A在一直线上时,|PA-PC|=AC最大.因为C点的坐标为(0,-3),A点的坐标为(-1,0),所以直线AC的关系式是y=-3x-3.又对称轴为x=1,所以点P的坐标(1,-6).(3)设M(,y)、N(,y),所求圆的半径为r,则,③因为对称轴为x=1,所以.④由③、④得:.⑤将N(r+1,y)代入关系式,得,整理,得.由于r=±y,当y=r0时,,解得,(舍去);当y=r0时,,解得,(舍去).所以此圆的半径是或.2.解:(1)作AH⊥OB于H,设AD与OC的交点为G∵BC是⊙A的直径∴点A为BC的中点∴AG、AH分别是△BOC的中位线∴AH=12×OC=3√AG=12×OB=1(三角形的中位线等于第三边的一半)故A点的坐标为(1,3√)(2)∵抛物线过O、B两点∴根据抛物线的对称性,可知抛物线的顶点横坐标为1∵抛物线的顶点在直线y=−(3√3)×x上∴x=1时y=−3√3∴抛物线的顶点坐标为(1,−3√3)设所求抛物线为y=a×x2+bx+c(a≠0)将三点坐标代入抛物线解析式y=a×x2+bx+c中得a=3√3,b=−2×3√3,c=0故抛物线解析式为y=(3√3)×x2−(2×3√3)×x(3)BC=22+(2×3√)2−−−−−−−−−−−√=4∵DE∥x轴A(1,3√)DE=BC=4∴D(-1,3√)E(3,3√)将x=-1代入抛物线解析式中得y=(3√3)+(2×3√3)=3√,故点D在抛物线y=(3√3)×x2−(2×3√3)×x上将x=3代入抛物线解析式得y=3×3√−2×3√=3√,点E在抛物线y=(3√3)×x2−(2×3√3)×x上(4)当点P在抛物线的OD或BE上时,∠BPC为钝角∴X0的取值范围是−1<X0<0或2<X0<33.(1)已知顶点M(1,4),抛物线的开口向下则,y-4=k(x-1)2经过N点,则有,3-4=k(2-1)2=k=-1所以,y=-(x-1)2+4.此即抛物线的解析式令y=0,易得:x1-1=2,即x1=3x2-1=-2,即,x2=-1据题意,A(-1,0),B(3,0)令x=0,则,y=-1+4=3,故,C(0,3)(2)由(1)的解可知,Yc=Yn,则,CN//AB,|CN|=2将C、M的坐标代入直线方程:y=kx+bb=3,4=k×1+3,k=1y=x+3与x轴的交点D(-3,0),则,|AD|=2线段CN=线段AD,CN//AD.亦即四边形ADCN是平行四边形(3)设⊙P与CD的切点为G,有PG=PA=PB设P(1,m).由以上计算知道:BD=6,∠CDB=45°PG所在直线方程的斜率k=-1,P在直线PG上,则有y=-x+m+1与y=x+3的交点即Gx=(m-2)/2,y=(m+4)/2.即G[(m-2)/2,(m+4)/2]据PG=PA,有PG2=m2+4=(4-m)2/4+(m-4)2/42m2+8=m2-8m+16m=2√6-4,m=-4-2√6(1,2√6-4),和(1,-4-2√6)即为所求⊙P的圆心坐标4.1)抛物线y=−3√3x2−23√3x+3√=−3√3(x2+2x+1)+3√+3√3=−3√3(x+1)2+43√3∴E的坐标为(−1,43√3);(2)连AC;∵M过A,O,C,∠AOC=90∘,∴AC为O的直径。而|OA|=3,OC=3√∴r=AC2=3√.∴SM=πr2=3π;(3)当点D运动到OAˆ的中点时,直线GA与M相切。理由:在Rt△ACO中,|OA|=3,OC=3√,∵tan∠ACO=33√=3√.∴∠ACO=60∘,∠CAO=30∘.∵点D是OAˆ的中点,∴ADˆ=DOˆ.∴∠ACG=∠DCO=30∘.∴OF=OC⋅tan30∘=1,∠CFO=60∘.在△GAF中,AF=2,FG=2,∠AFG=∠CFO=60∘,∴△AGF为等边三角形。∴∠GAF=60∘.∴∠CAG=∠GAF+∠CAO=90∘.又AC为直径,∴当D为OAˆ的中点时,GA为M的切线。5.(1)设抛物线的解析式为:由题意得:……………1分解得:………………2分∴抛物线的解析式为:………………1分(2)存在抛物线的顶点坐标是,作抛物线和⊙M(如图),设满足条件的切线l与x轴交于点B,与⊙M相切于点C连接MC,过C作CD⊥x轴于D∵=2,∠CBM=30°,CM⊥BC∴∠BCM=90°,∠BMC=60°,BM=2CM=4,∴B(-2,0)在Rt△CDM中,∠DCM=∠CDM-∠CMD=30°∴DM=1,CD==∴C(1,)设切线l的解析式为:,点B、C在l上,可得:解得:∴切线BC的解析式为:∵点P为抛物线与切线的交点由解得:∴点P的坐标为:,………………4分∵抛物线的对称轴是直线此抛物线、⊙M都与直线成轴对称图形于是作切线l关于直线的对称直线l′(如图)得到B、C关于直线的对称点B1、C1l′满足题中要求,由对称性,得到P1、P2关于直线的对称点:,即为所求的点.………………4分
本文标题:二次函数与圆综合题
链接地址:https://www.777doc.com/doc-4978878 .html