您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 二次根式试卷(含答案)
初中数学二次根式练习一.选择题(共10小题)1.(2013•宜昌)若式子在实数范围内有意义,则x的取值范围是()A.x=1B.x≥1C.x>1D.x<12.(2013•宜宾)二次根式的值是()A.﹣3B.3或﹣3C.9D.33.(2013•新疆)下列各式计算正确的是()A.B.(﹣3)﹣2=﹣C.a0=1D.4.(2011•泸州)设实数a,b在数轴上对应的位置如图所示,化简的结果是()A.﹣2a+bB.2a+bC.﹣bD.b5.(2011•凉山州)已知,则2xy的值为()A.﹣15B.15C.D.6.(2009•襄阳)函数y=的自变量x的取值范围是()A.x>0B.x≥﹣2C.x>﹣2D.x≠﹣27.(2009•济宁)已知a为实数,那么等于()A.aB.﹣aC.﹣1D.08.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1B.1C.2D.39.(2004•泰州)若代数式+的值为2,则a的取值范围是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=410.(2002•鄂州)若x<0,且常数m满足条件,则化简所得的结果是()A.xB.﹣xC.x﹣2D.2﹣x二.填空题(共11小题)11.(2013•盘锦)若式子有意义,则x的取值范围是_________.12.(2012•自贡)函数中,自变量x的取值范围是_________.13.(2010•孝感)使是整数的最小正整数n=_________.14.(2010•黔东南州)把根号外的因式移到根号内后,其结果是_________.15.(2002•娄底)若=﹣1,则x_________.16.(2001•沈阳)已知x≤1,化简=_________.17.(2012•肇庆)计算的结果是_________.18.(2009•大连)计算:()()=_________.19.(2006•厦门)计算:()0+•()﹣1=_________.20.(2007•河池)化简:=_________.21.(2011•威海)计算的结果是_________.三.解答题(共8小题)23.(2003•海南)先化简,后求值:(x+1)2﹣x(x+2y)﹣2x,其中x=+1,y=﹣1.24.计算题:(1);(2)25.计算:(﹣)226.计算:27.计算:12.28.(2010•鄂尔多斯)(1)计算﹣22+﹣()﹣1×(π﹣)0;(2)先化简,再求值:÷(a+),其中a=﹣1,b=1.29.(2009•仙桃)先化简,再求值:,其中x=2﹣.30.(2012•绵阳)(1)计算:(π﹣2)0﹣|+|×(﹣);(2)化简:(1+)+(2x﹣)(3)已知a是34的小数部分,那么代数式aaaaaaaaa42442222的值为(4).有一道题:“先化简,再求值:41442222xxxxx,其中3x.”小玲做题时把“3x”错钞成了“3x”,但她的计算结果是正确的,请你解释这是怎么回事.参考答案与试题解析一.选择题(共10小题)1.(2013•宜昌)若式子在实数范围内有意义,则x的取值范围是()A.x=1B.x≥1C.x>1D.x<1考点:二次根式有意义的条件.菁优网版权所有分析:二次根式有意义:被开方数是非负数.解答:解:由题意,得x﹣1≥0,解得,x≥1.故选B.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.(2013•宜宾)二次根式的值是()A.﹣3B.3或﹣3C.9D.3考点:二次根式的性质与化简.菁优网版权所有专题:计算题.分析:本题考查二次根式的化简,.解答:解:=﹣(﹣3)=3.故选D.点评:本题考查了根据二次根式的意义化简.二次根式化简规律:当a≥0时,=a;当a≤0时,=﹣a.3.(2013•新疆)下列各式计算正确的是()A.B.(﹣3)﹣2=﹣C.a0=1D.考点:二次根式的加减法;零指数幂;负整数指数幂;二次根式的性质与化简.菁优网版权所有分析:根据二次根式的加减、负整数指数幂、零指数幂及二次根式的化简,分别进行各选项的判断,即可得出答案.解答:解:A、﹣=3﹣4=﹣,运算正确,故本选项正确;B、(﹣3)﹣2=,原式运算错误,故本选项错误;C、a0=1,当a≠0时成立,没有限制a的取值范围,故本选项错误;D、=2,原式运算错误,故本选项错误;故选A.点评:本题考查了二次根式的加减、负整数指数幂、零指数幂及二次根式的化简,解答本题的关键是掌握各部分的运算法则.4.(2011•泸州)设实数a,b在数轴上对应的位置如图所示,化简的结果是()A.﹣2a+bB.2a+bC.﹣bD.b考点:二次根式的性质与化简;实数与数轴.菁优网版权所有分析:根据数轴上a,b的值得出a,b的符号,a<0,b>0,以及a+b>0,即可化简求值.解答:解:根据数轴上a,b的值得出a,b的符号,a<0,b>0,a+b>0,∴=﹣a+a+b=b,故选:D.点评:此题主要考查了二次根式的化简以及实数与数轴,根据数轴得出a,b的符号是解决问题的关键.5.(2011•凉山州)已知,则2xy的值为()A.﹣15B.15C.D.考点:二次根式有意义的条件.菁优网版权所有分析:首先根据二次根式有意义的条件求出x的值,然后代入式子求出y的值,最后求出2xy的值.解答:解:要使有意义,则,解得x=,故y=﹣3,∴2xy=2××(﹣3)=﹣15.故选A.点评:本题主要考查二次根式有意义的条件,解答本题的关键是求出x和y的值,本题难度一般.6.(2009•襄阳)函数y=的自变量x的取值范围是()A.x>0B.x≥﹣2C.x>﹣2D.x≠﹣2考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.菁优网版权所有分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可求解.解答:解:根据题意得:x+2>0,解得,x>﹣2故选C.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.(2009•济宁)已知a为实数,那么等于()A.aB.﹣aC.﹣1D.0考点:二次根式的性质与化简.菁优网版权所有分析:根据非负数的性质,只有a=0时,有意义,可求根式的值.解答:解:根据非负数的性质a2≥0,根据二次根式的意义,﹣a2≥0,故只有a=0时,有意义,所以,=0.故选D.点评:注意:平方数和算术平方根都是非负数,这是解答此题的关键.8.(2009•荆门)若=(x+y)2,则x﹣y的值为()A.﹣1B.1C.2D.3考点:二次根式有意义的条件.菁优网版权所有分析:先根据二次根式的性质,被开方数大于或等于0,可求出x、y的值,再代入代数式即可.解答:解:∵=(x+y)2有意义,∴x﹣1≥0且1﹣x≥0,∴x=1,y=﹣1,∴x﹣y=1﹣(﹣1)=2.故选C.点评:本题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.(2004•泰州)若代数式+的值为2,则a的取值范围是()A.a≥4B.a≤2C.2≤a≤4D.a=2或a=4考点:二次根式的性质与化简.菁优网版权所有分析:若代数式+的值为2,即(2﹣a)与(a﹣4)同为非正数.解答:解:依题意,得|2﹣a|+|a﹣4|=a﹣2+4﹣a=2,由结果可知(2﹣a)≤0,且(a﹣4)≤0,解得2≤a≤4.故选C.点评:本题考查了根据二次根式的意义与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.10.(2002•鄂州)若x<0,且常数m满足条件,则化简所得的结果是()A.xB.﹣xC.x﹣2D.2﹣x考点:二次根式的性质与化简;分式的值为零的条件.菁优网版权所有分析:利用绝对值和分式的性质,先求m值,再对所求式子化简.解答:解:∵则|m|﹣1=0,且m2+m﹣2=(m﹣1)(m+2)≠0解得m=﹣1,∵x<0,∴1﹣x>1>0,原式=||x﹣1|﹣1|=|1﹣x﹣1|=|﹣x|=﹣x故选B.点评:本题考查了二次根式的化简,注意二次根式、绝对值的结果为非负数.二.填空题(共12小题)11.(2013•盘锦)若式子有意义,则x的取值范围是x≥﹣1且x≠0.考点:二次根式有意义的条件;分式有意义的条件.菁优网版权所有分析:根据二次根式及分式有意义的条件解答即可.解答:解:根据二次根式的性质可知:x+1≥0,即x≥﹣1,又因为分式的分母不能为0,所以x的取值范围是x≥﹣1且x≠0.点评:此题主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义;当分母中含字母时,还要考虑分母不等于零.12.(2012•自贡)函数中,自变量x的取值范围是x≤2且x≠1.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.菁优网版权所有分析:根据二次根式的性质和分式的意义,被开方数大于等于0,可知2﹣x≥0;分母不等于0,可知:x﹣1≠0,则可以求出自变量x的取值范围.解答:解:根据题意得:解得:x≤2且x≠1.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(2012•眉山)直线y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:=1.考点:一次函数图象与系数的关系;二次根式的性质与化简.菁优网版权所有专题:压轴题.分析:先根据图象判断出a、b的符号,再根据绝对值的性质去掉绝对值符号即可.解答:解:根据图象可知直线y=(3﹣a)x+b﹣2经过第二、三、四象限,所以3﹣a<0,b﹣2<0,所以a>3,b<2,所以b﹣a<0,a﹣3>0,2﹣b>0,所以=a﹣b﹣|a﹣3|﹣(2﹣b)=a﹣b﹣a+3﹣2+b=1.故答案为1.点评:主要考查了一次函数的图象性质及绝对值的性质,要掌握它的性质才能灵活解题.14.(2010•孝感)使是整数的最小正整数n=3.考点:二次根式的性质与化简.菁优网版权所有分析:先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.解答:解:=2,由于是整数,所以n的最小正整数值是3.点评:解答此题的关键是能够正确的对二次根式进行化简.15.(2010•黔东南州)把根号外的因式移到根号内后,其结果是﹣.考点:二次根式的性质与化简.菁优网版权所有专题:常规题型.分析:由题意得,2﹣a>0,则a﹣2<0,那么此根式为负,把负号留在根号外,a﹣2平方后,移到根号内,约分即可.解答:解:由题意得,2﹣a>0,则a﹣2<0,∴=﹣.故答案为:﹣.点评:此题主要考查二次根式的性质,二次根式有意义的条件是被开方数是非负数,还要考虑分母不为0这个条件.16.(2002•娄底)若=﹣1,则x<0.考点:二次根式的性质与化简.菁优网版权所有分析:根据已知变形得=﹣x,且分母x≠0,由二次根式的性质判断x的符号.解答:解:由=﹣1,得=﹣x,且分母x≠0,∴x<0.点评:本题主要考查了开平方的性质,及分式运算符号的取法.17.(2001•沈阳)已知x≤1,化简=﹣1.考点:二次根式的性质与化简.菁优网版权所有分析:根据二次根式的性质化简以及运用完全平方公式.解答:解:∵x≤1,∴1﹣x≥0,x﹣2<0原式=﹣=|1﹣x|﹣|x﹣2|=1﹣x﹣(2﹣x)=﹣1.点评:应把被开方数整理成完全平方公式的形式,再利用=|a|进行化简.需注意二次根式的结果一定为非负数.18.(2012•肇庆)计算的结果是2.考点:二次根式的乘除法.菁优网版权所有专题:计算题.分析:根据二次根式乘法、商的算术平方根等概念分别判断.解答:解:原式=2×=2.故答案
本文标题:二次根式试卷(含答案)
链接地址:https://www.777doc.com/doc-4982092 .html