您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七下探索轴对称的性质PB翻折变换(折叠问题)
七下7.3探索轴对称的性质PB翻折变换(折叠问题)选择菁优网©2010-2013菁优网七下7.3探索轴对称的性质PB翻折变换(折叠问题)选择一.选择题(共30小题)1.(2010•盘锦)如图所示,将矩形纸片沿虚线按箭头方向(向右)对折记为一次对折,如此对折x次,展开后得到n条平行折痕,则将矩形对折x+1次,展开后得到的平行折痕条数为()A.n+1B.2n﹣1C.2nD.2n+12.(2010•江西)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.5B.3C.2D.13.(2010•吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cmB.36cmC.40cmD.72cm4.(2010•菏泽)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形面积的比为()A.B.C.D.5.(2010•大庆)如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S1与△ABC的面积S2之间的关系是()菁优网©2010-2013菁优网A.B.C.D.6.(2010•抚顺)如图所示,在完全重合放置的两张矩形纸片ABCD中,AB=4,BC=8,将上面的矩形纸片折叠,使点C与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分的面积为()A.B.6C.D.7.(2010•本溪)如图①,矩形ABCD,AB=12cm,AD=16cm,现将其按下列步骤折叠:(1)将△BAD对折,使AB落在AD上,得到折痕AE,如图②(2)将△AEB沿BF折叠,AE与DC交点F,如图③则所得梯形BDFE的周长等于()A.12+2B.24+2C.24+4D.12+48.(2009•淄博)矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为()A.8B.C.4D.菁优网©2010-2013菁优网9.(2009•西宁)身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形纸片ABCD(矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE=()A.60°B.67.5°C.72°D.75°10.(2009•泰安)如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.B.C.4D.311.(2009•太原)在二行三列的方格棋盘上沿骰子的某条棱翻动骰子(相对面上分别标有1点和6点,2点和5点,3点和4点),在每一种翻动方式中,骰子不能后退.开始时骰子如图(1)那样摆放,朝上的点数是2;最后翻动到如图(2)所示的位置,此时骰子朝上的点数不可能是下列数中的()A.5B.4C.3D.112.(2009•兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()A.B.C.D.13.(2009•莱芜)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°菁优网©2010-2013菁优网14.(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°15.(2009•吉林)将宽为2cm的长方形纸条折叠成如图所示的形状,那么折痕PQ的长是()A.cmB.cmC.cmD.2cm16.(2009•哈尔滨)如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,若∠A′BC=20°,则∠A′BD的度数为()A.15°B.20°C.25°D.30°17.(2009•崇左)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°18.(2008•南宁)如图,将矩形纸片ABCD(图1)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图2);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上,折痕EF交AD边于点F(如图3);(3)将纸片收展平,那么∠AFE的度数为()A.60°B.67.5°C.72°D.75°菁优网©2010-2013菁优网19.(2007•台湾)如图甲,四边形纸片ABCD中,∠B=120°,∠D=50°.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图乙所示,则∠C等于()A.80°B.85°C.95°D.110°20.(2007•攀枝花)将一张矩形纸片ABCD按如图所示折叠,使顶点C落在C′点.已知AB=2,∠DEC′=30°,则EF的长是()A.B.C.2D.221.(2007•乐山)如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD的边BC长为()A.20B.22C.24D.3022.(2007•江西)如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A.6个B.5个C.4个D.3个23.(2007•呼伦贝尔)如图,将一个边长分别为4,8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是()菁优网©2010-2013菁优网A.B.C.D.24.(2007•哈尔滨)如图,矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠,点B落在点E处,AE交DC于点F,若AF=cm,则AD的长为()A.4cmB.5cmC.6cmD.7cm25.(2007•贵阳)如图A所示,将长为20cm,宽为2cm的长方形白纸条,折成图B所示的图形并在其一面着色,则着色部分的面积为()A.34cm2B.36cm2C.38cm2D.40cm226.(2007•赤峰)如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为()A.3B.6C.D.27.(2006•淄博)将一矩形纸片按如图方式折叠,BC、BD为折痕,折叠后A′B与E′B在同一条直线上,则∠CBD的度数()A.大于90°B.小于90°C.等于90°D.不能确定菁优网©2010-2013菁优网28.(2006•株洲)将一张矩形纸片ABCD如图所示折叠,使顶点C落在C′点.已知AB=2,∠DEC′=30°,则折痕DE的长为()A.2B.2C.4D.129.(2006•武汉)(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31°B.28°C.24°D.22°30.(2006•梅州)如图,在平面内,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.115°B.130°C.120°D.65°菁优网©2010-2013菁优网七下7.3探索轴对称的性质PB翻折变换(折叠问题)选择参考答案与试题解析一.选择题(共30小题)1.(2010•盘锦)如图所示,将矩形纸片沿虚线按箭头方向(向右)对折记为一次对折,如此对折x次,展开后得到n条平行折痕,则将矩形对折x+1次,展开后得到的平行折痕条数为()A.n+1B.2n﹣1C.2nD.2n+1考点:翻折变换(折叠问题).3824674专题:压轴题;规律型.分析:由特殊数据发现和次数的对应规律,进一步推而广之,又对折x次,展开后得到n条平行折痕,即可得出答案.解答:解:不难发现:第一次对折:1=2﹣1;第二次对折:3=22﹣1;第三次对折:7=23﹣1;第四次对折:15=24﹣1;….依此类推,第x次对折,可以得到(2x﹣1)=n条,第x+1次对折,可以得到(2x+1﹣1)=2(n+1)﹣1=2n+1条,故选D.点评:此题考查了折叠变换的知识,主要培养学生的观察能力和空间想象能力.2.(2010•江西)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A.5B.3C.2D.1考点:翻折变换(折叠问题).3824674专题:压轴题.分析:连接BH,根据折叠的性质得到∠1=∠2,EB=EH,BH⊥EG,则∠EBH=∠EHB,又点E是AB的中点,得EH=EB=EA,于是判断△AHB为直角三角形,且∠3=∠4,根据等角的余交相等得到∠1=∠3,因此有∠1=∠2=∠3=∠4.解答:解:连接BH,如图,菁优网©2010-2013菁优网∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴EH=AB,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.则与∠BEG相等的角有3个.故选B点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.3.(2010•吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cmB.36cmC.40cmD.72cm考点:翻折变换(折叠问题).3824674专题:压轴题.分析:延长A1E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.解答:解:延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1≌四边形EGDA,∴AD=A1D1,AE=A1E,DG=D1H,FH=FG,∴阴影部分的周长=矩形的周长=(12+6)×2=36cm.故选B.点评:本题利用了翻折的性质:对应图形全等,对应边相等.菁优网©2010-2013菁优网4.(2010•菏泽)如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形面积的比为()A.B.C.D.考点:翻折变换(折叠问题).3824674分析:根据已知条件,易求BD=5.根据折叠的性质DA′=AD=3,得A′B=2.根据△ABD∽△A′BG可得面积之间的比值,再进一步求与矩形面积的比.解答:解:∵矩形纸片ABCD中,AB=4,AD=3,∴BD=5,∵DA′=AD,∴A′B=2.∵∠BA′G=∠A=90°,∠A′BG=∠ABD,∴△A
本文标题:七下探索轴对称的性质PB翻折变换(折叠问题)
链接地址:https://www.777doc.com/doc-4987028 .html