您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 花拉子米的功绩——代数学的起源
花拉子米的功绩——代数学的起源代数学是数学的重要分支学科之一,对数学来说有基础性的意义:一方面代数学为许多现代数学分支提供了发展的基础;另一方面,它的初步内容又构成了人们学习数学的入门知识.代数学的发展经历过漫长的历史时代,许多国家、许多民族都做出过贡献.在以方程论为中心的古典代数学的发展中,阿拉伯数学家做出了独特的贡献,花拉子米就是代表.代数学的萌芽有了古老的算术以后,越来越多的问题摆在了数学家面前.为了寻找较为普遍的方法来解决在算术里积累的大量数量问题,古老的算术就必须进行改进和发展.在这个缓慢的过程中,便产生了古典代数学的萌芽,因此,算术和代数没有截然分开的时间.代数最初是用文字表述的,大约在公元前2000年,巴比伦算术已经演化出一些用文字表述的代数解题方法.他们既能用相当于代入一般公式的方法,又能用配方法来解二次方程,还讨论过某些三次方程和双二次方程.方程问题是古典代数的主要内容,除了巴比伦,在古代的中国、印度、阿拉伯等国家对方程的认识也都有着悠久的历史.秦汉时期,天文历法有了较大的发展,为了编制历法,当时的中国数学家就已经知道了一些方程的解法.约公元50年成书的《九章算术》,是中国流传至今最古老的一部数学专著.在这本书中已经使用了“方程”这个名词,并且出现了解一元一次方程和一元二次方程等许多代数问题.之后,东汉末年至三国时代的赵爽研究了二次方程的求根问题;他还研究了根与系数的关系,得到了和一元二次方程的求根公式以及“韦达定理”相似的结果.南北朝时期的数学家张邱建在《张邱建算经》一书中给出了一个用文字写出的方在以后的各个朝代中,中国数学家对方程的研究都有过重要成就,例如唐朝王孝通、张遂,北宋时期的贾宪、刘益,南宋时期的秦九韶等,他们对方程的解法或有所改进,或有所创新.但是,如何去表示一个方程却一直是很困难的,因为用字母代替未知数,用符号表示代数式这种方法自创立至今也不过400年的历史.在这之前都是用文字叙述的,为了简明地列出方程,古人们想了许多改进办法.公元11、12世纪,中国产生了“天元术”,13世纪数学家李冶将其整理、简化.李冶的天元术中,先“立天元为一某某”就是设未知数,然后根据问题的条件列出天元式.在未知量的一次项旁边记一“元”字,在常数项旁记一“太”字,并按高次幂在上低次幂在排列,还可两个天元式相减进行“同数相消”.天元术已有现代列方程记法的雏型,现代学史家称它为半符号代数.用“元”代表未知数的说法,一直延用到现在.活动于公元250年前后的丢番图是希腊数学中的代表人物,他最出色的著作《算术》一书中的绝大多数篇章谈的是方程,他是解方程的大师,被称为代数学的鼻祖.受中国的影响,印度在7世纪初就有了用文字写的代数学,已经能使用缩写文字和一些记号来描述代数的问题和解答,具有符号代数的性质.公元820年左右,阿拉伯数学家花拉子米从印度回国后著《代数学》一书.该书的方程论被规定为代数学的研究对象,方程的概念也被明确起来,书中第一次明确提出了二次方程的一般解法,同时,还提出了“移项”、“合并同类项”等方法.以后,方程的解法被作为代数的基本特征长期保留下来.从此,诞生了花拉子米的代数学.外号取代了本名的数学家花拉子米是中世纪中亚地区的一位重要数学家.他于公元783年左右出生于花拉子模.花拉子模是中亚地区的一个古国,位于咸海之南.现分属于乌兹别花拉子米(783—850)克斯坦和土库曼斯坦.花拉子米的意思是“祖籍花拉子模的人”,是此人的一个外号.后来人们都这么称呼他,外号就取代了本名,本名反而不为人所知了.他早年在家乡接受初等教育,后到中亚地区的古城默夫深造,并到过阿富汗、印度等地游学,很快成为这一地区远近闻名的学者.公元813年,阿拔斯王朝的哈利发马蒙聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”,花拉子米是该馆的主要学术负责人之一.他在这里一直工作到850年左右去世.花拉子米一生写出许多著作,除了大量的数学著作外,还有天文学、地理学著作.代数学名称的由来花拉子米在研究方程求解的过程中,首倡把一个负项移到方程的另一端变为正项,称之为al-jabr,意思是“还原”,并认为方程的两端可以消去相同的项或合并同类项,称之为muqa-bala,意为“对消”或“化简”.这是花拉子米首创的两种重要的数学方法.他于820年左右写成了《还原和对消计算概要》这一传世之作,原文是阿拉伯文,拉丁文译名为LibermahucmetideAlgebraetalmuchabala.从书名来看,algebra来自于阿拉伯文的al-jabr.阿拉伯文jbr的意义是“恢复”、“还原”.解方程时将负项移到另一端,变成正项,也可以说是一种“还原”.书名后面的那个阿拉伯文muqabala原意为“对抗”、“平衡”,用来指消去方程两端相同的项或合并同类项,也可译为“对消”.12世纪时,al-jabr译为拉丁文时成为algebra,而花拉子米书名的第二个字muqubala渐渐被省略,全书常简称为algebra.于是这个学科就以algebra为名.algebra传入我国,最初音译为“阿尔热巴拉”.1761年梅珏成在《赤水遗珍》中译为“阿尔热八达”,《数理精蕴》则把algebra意译为“借根方比例”即“假借根数、方数以求实数之法”.1845年,俄国政府赠送给我国的图书中有中译名为《阿尔喀布拉数书》一本,其中的“阿尔喀布拉”是俄文的音译.1847年,英国人伟烈亚力来到上海学习中文.1853年他用中文写了一本《数学启蒙》,介绍西方数学,他在序中说:“有代数、微分诸书在,余将续梓之.”这是中文中第一次用“代数”这一词作为这个数学分支的名称.1859年,伟烈亚力和李善兰合译《代微积拾级》,李善兰在序中正式使用了“代数”这一名称:“中法之四元,即西法之代数也.”同年,两人又合译德摩根的书,正式定名为《代数学》,这是我国第一本以代数学为名的书.这个名称也就一直用到现在.代数学的发展花拉子米的《代数学》一书,奠定了以方程论为中心的古典代数学学科的基石.此书的理论易学易懂,又能联系许多实际问题,适合当时人们的各种需要,因此,流传久远.13世纪传入欧洲,对欧洲文艺复兴时期的代数学影响极大,被奉为代数学教科书的鼻祖.而花拉子米则被人们尊为“代数学之父”.在花拉子米以后的几个世纪中,代数学发展缓慢.直到1591年,法国数学家韦达第一次在代数中系统地使用了字母,他用字母表示未知数,也用字母表示已知数.这种代数从过去以解决各种特殊问题且侧重于计算的数学分支,发展成为一门以研究一般类型问题的学科,使代数学的发展插上了翅膀.韦达认为,代数是施行于事物的类或形式的运算方法,算术只是同数打交道的.所以,当时人们把代数看成是关于字母的计算、关于由字母表示的公式的变换以及关于解代数方程的科学,这标志着古典代数学的真正确立与完善.
本文标题:花拉子米的功绩——代数学的起源
链接地址:https://www.777doc.com/doc-5006796 .html