您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 超几何分布与二项分布考题详解
第1页共8页专题:超几何分布与二项分布南海中学2012届高三理科数学备课组[知识点]关键是判断超几何分布与二项分布判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N个)内含有两种不同的事物()AM个、()BNM个,任取n个,其中恰有X个A.符合该条件的即可断定是超几何分布,按照超几何分布的分布列()knkMNMnNCCPXkC(0,1,2,,km)进行处理就可以了.二项分布必须同时满足以下两个条件:①在一次试验中试验结果只有A与A这两个,且事件A发生的概率为p,事件A发生的概率为1p;②试验可以独立重复地进行,即每次重复做一次试验,事件A发生的概率都是同一常数p,事件A发生的概率为1p.1、(2011•北京海淀一模)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(Ⅰ)随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为X,求X的分布列;(Ⅲ)随机选取3件产品,求这三件产品都不能通过检测的概率.【解析】(Ⅰ)设随机选取一件产品,能够通过检测的事件为A…………………………1分事件A等于事件“选取一等品都通过检测或者是选取二等品通过检测”……………2分151332104106)(Ap…………………………4分(Ⅱ)由题可知X可能取值为0,1,2,3.30463101(0)30CCPXC,21463103(1)10CCPXC,12463101(2)2CCPXC,03463101(3)6CCPXC.………………8分故X的分布列为………………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B……………10分事件B等于事件“随机选取3件产品都是二等品且都不能通过检测”所以,3111()()303810PB.……………13分2、(2011•深圳一模)第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者。将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?(Ⅱ)若从所有“高个子”中选3名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.【解析】(Ⅰ)根据茎叶图,有“高个子”12人,“非高个子”18人,…………1分用分层抽样的方法,每个人被抽中的概率是61305,………………2分X0123P3011032161第2页共8页所以选中的“高个子”有26112人,“非高个子”有36118人.…………3分用事件A表示“至少有一名“高个子”被选中”,则它的对立事件A表示“没有一名“高个子”被选中”,则()PA12523CC1071031.……5分因此,至少有一人是“高个子”的概率是107.…6分(Ⅱ)依题意,的取值为0,1,2,3.………………7分5514CC)0(31238P,5528CCC)1(3122814P,5512CCC)2(3121824P,551CC)3(31234P.…………………9分因此,的分布列如下:0123p551455285512551……10分15513551225528155140E.…………12分3、(2011•广州二模)某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.视觉视觉记忆能力偏低中等偏高超常听觉记忆能力偏低0751中等183b偏高2a01超常0211由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为25.(Ⅰ)试确定a、b的值;(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为,求随机变量的分布列.【解析】(Ⅰ)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10)a人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A,则102()405aPA,解得6a,从而40(32)40382ba.(Ⅱ)由于从40位学生中任意抽取3位的结果数为340C,其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为32416kkCC,所以从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为32416340()kkCCPkC(0,1,2,3)k.的可能取值为0、1、2、3.因为03241634014(0)247CCPC,12241634072(1)247CCPC,212416340552(2)1235CCPC,302416340253(3)1235CCPC,所以的分布列为0123P142477224755212352531235听觉第3页共8页频率组距202530354045年龄岁4、(2011•北京朝阳一模)在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是23.(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;(Ⅱ)求教师甲在一场比赛中获奖的概率;(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?【解析】(Ⅰ)X的所有可能取值为0,1,2,3,4,5,6.依条件可知X~B(6,23).6621()33kkkPXkC(0,1,2,3,4,5,6k)所以X的分布列为:X0123456P1729127296072916072924072919272964729所以1(01112260316042405192664)729EX=29164729.或因为X~B(6,23),所以2643EX.即X的数学期望为4.(Ⅱ)设教师甲在一场比赛中获奖为事件A,则224156441212232()()()()().3333381PACC答:教师甲在一场比赛中获奖的概率为32.81(Ⅲ)设教师乙在这场比赛中获奖为事件B,则2444662()5AAPBA.(此处为244625CC会更好!因为样本空间基于:已知6个球中恰好投进了4个球)即教师乙在这场比赛中获奖的概率为25.显然2323258081,所以教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率不相等.5、(2011•北京石景山一模)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[3035,)岁的人数;(Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”的人数为X,求X的分布列及数学期望.分组(单位:岁)频数频率20,255050.025,30①200.030,3535②35,4030300.040,4510100.0合计10000.1第4页共8页频率组距202530354045年龄岁【解析】(Ⅰ)①处填20,②处填35.0;补全频率分布直方图如图所示.500名志愿者中年龄在35,30的人数为0.35500175人.…6分(Ⅱ)用分层抽样的方法,从中选取20人,则其中“年龄低于30岁”的有5人,“年龄不低于30岁”的有15人.…………7分故X的可能取值为0,1,2;21522021(0)38CPXC,1115522015(1)38CCPXC,252202(2)38CPXC,……11分所以X的分布列为:X012P21381538238∴2115210123838382EX.…………13分6、(2011•北京朝阳二模)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X).【解析】(Ⅰ)记“该产品不能销售”为事件A,则111()1(1)(1)6104PA.所以,该产品不能销售的概率为14.……………………………………4分(Ⅱ)由已知,可知X的取值为320,200,80,40,160.………………………5分411(320)()4256PX,134133(200)()4464PXC,22241327(80)()()44128PXC,3341327(40)()4464PXC,4381(160)()4256PX.……………………………………10分所以X的分布列为X-320-200-8040160P125636427128276481256……………………………………11分E(X)112727813202008040160256641286425640,故均值E(X)为40.……12分7、(2011•北京丰台二模)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为12;L2路线上有B1,B2第5页共8页HCA1A2B1B2L1L2A3两个路口,各路口遇到红灯的概率依次为34,35.(Ⅰ)若走L1路线,求最多..遇到1次红灯的概率;(Ⅱ)若走L2路线,求遇到红灯次数X的数学期望;(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.【解析】(Ⅰ)设走L1路线最多遇到1次红灯为A事件,则0312331111()=()()2222PACC.…4分所以走L1路线,最多遇到1次红灯的概率为12.(Ⅱ)依题意,X的可能取值为0,1,2.…………5分331(=0)=(1)(1)4510PX,33339(=1)=(1)(1)454520PX,339(=2)=4520PX.…8分故随机变量X的分布列为:X012P1109209201992701210202020EX.………………10分(Ⅲ)设选择L1路线遇到红灯次数为Y,随机变量Y服从二项分布,1(3,)2YB,所以13322EY.……12分因为EXEY,所以选择L2路线上班最好.……14分8、(2011•北京海淀二模)某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载
本文标题:超几何分布与二项分布考题详解
链接地址:https://www.777doc.com/doc-5008425 .html