您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 信号与系统重要公式总结
周期信号与非周期信号连续时间信号:()()ftftkT0,1,2,k离散时间信号:()()xnxnkn0,1,2,k000()jtjtTee002T00()jnjnNee02Nk为整数能量信号和功率信号连续时间信号2|()|Eftdt2221|()|TTPftdtT(周期信号)2221|()|limTTTftTPdt(非周期信号)离散时间信号2|()|nExn21|()|21NnNPxnN(周期信号)21()21limNnNNPxnN(非周期信号)1、能量信号:E有限0E,0P;2、功率信号:P有限0P,P;3、若EP,,则该信号既不是能量信号也不是功率信号;4、一般周期信号是功率信号。线性系统)()()()()()()()(221122112211tyatyatxatxatytxtytx,则,若)()()()()()()()(221122112211nyanyanxanxanynxnynx,则,若时不变系统)()()()(00ttyttxtytx,则若)()()()(00tnynnxnynx,则若系统时不变性:1电路分析:元件的参数值是否随时间而变化2方程分析:系数是否随时间而变3输入输出分析:输入激励信号有时移,输出响应信号也同样有时移直流信号:Ktf)(()t实指数信号:atKetf)()(为实数a复指数信号:stKetf)()(js当0时是2的周期信号正弦信号:)sin()(tKtf钟形信号(高斯信号):2)()(tEetf抽样信号:tttSasin)(★1)0(Sa0|)(nttSa★偶函数:)()(tSatSa★dttSa)(002)()(dttSadttSa★tttsin)(sinc单位阶跃信号:0001)(tttu★]1)[sgn(21)(ttu符号函数信号:0101)sgn(ttt★1)(2)sgn(tut单位斜坡信号:)()(ttutf★)()(tutfdtd)()(tfdut门函数信号:其它0221)(ttg★)2()2()(tututg三角脉冲信号:tttttf0101)(★)]()()[||1()(tututtf单位冲击函数)(t的性质一般定义1)(000)(dttttt泛函定义()()(0)AttdtA单位冲击函数与单位阶跃函数的关系dtut)()()()(tudtdttkktSaktkksinlim)]([lim)(相乘运算)()0()()(tfttf)0()()(fdtttf时间位移运算)()()()(000tttftttf)()()(00tfdttttf反褶运算)()(tt的偶函数是tt)(时间尺度变换)(||1)(taat1||()()baaatbt卷积运算)()()(ttt)()()(2121ttttttt)()()(tfttf)()()(00ttftttf的性质的复合函数)]([)(tft设0)(tf有n个互不相等的实根nttt,,,21,则有)(|)(|1)]([1'iniitttftf其中)('itf表示)(tf在itt处的导数,且),,2,1(0)('nitfi单位冲击偶函数)('t的性质一般定义)()('tdtdt泛函定义''0()()[()](0)tdfttdtftfdt积分性质0)('dtt反褶运算)()(''tt的奇函数是tt)(相乘运算)()0()()0()()('''tftfttf)0()()(''fdtttf时间位移运算)()()()()()(00'0'00'tttftttftttf)()()(0'0'tfdttttf导数运算)()0()()0(2)()0()()(''''''''tftftfttf时间尺度变换)(1||1)(''taaat)(1||1)()()(taaatnnn)()1()(1)()(ttannn时,当''2''21()()01()()0batbtaaabatbtaaa注:离散单位脉冲函数有()()ann卷积运算)()()('tfdtdttf卷积的性质卷积定义122112()()()()()()fftdfftdftft交换律1221()()()()ftftftft分配率1231213()[()()]()()()()ftftftftftftft结合律123123[()()]()()[()()]ftftftftftft奇异信号卷积特性)()()(tfttf)()()(00ttftttf)()()(''tfttf)()()()()(tfttfnn)()()(0)(0)(ttftttfnndftutft)()()()()()(tuttutu)()()()(batubatbtuatu)()!1(!!)()(1tutnmnmtuttutnmnm()()()ttteuteuteut121212121()()()()tttteuteuteeut()延时性质)()()()()()(21221121tttfttfttftftftf,则若微分与积分性质)()()()()]()([212121tfdttdfdttdftftftfdtd阶数数,取负整数为积分的取正整数时为导数的阶当,则若jitftftftftftfjiji,)()()()()()()(2)(1)(21)()()()(2121tftfdfdttdft电路元件的运算模型电阻电容电感时域ui关系()()utRit()1()()tQtutitdtCC()()dutitCdt()()dutLitdt()1()()()()()()ttutdtLLdttLitutdtit为磁链,算子模型()()utRit()1()utitpC()()utpLit频域等效阻抗()()RRUtZRIt()1()CCUtZItjC()()CCUtZItjL复频域等效阻抗ZR1ZsCZsL运算模型()()RRUsIsR11(0)()()CCCusCsUsIs(0)()()CCCuIssCUsC(0)()()LLLiUssLIsL11(0)()()LLLisLsIsUs电路模型回路分析电路模型节点分析狄利克雷(Dirichlet)条件(只要满足这个条件信号就可以利用傅里叶级数展开)(1)在一周期内,如果有间断点存在,则间断点的数目应是有限个。(2)在一周期内,极大值和极小值的数目应是有限个。(3)在一周期内,信号是绝对可积的:即00|()|tTtftdt。周期信号的傅里叶级数三角函数形式01sin()(cos)nnnftaantbnt00000001()2()cos2()sintTttTnttTntaftdtTaftntdtTbftntdtT指数形式()jntnnftFe001()tTjntntFftedtT备注T2为角频率00aF)(21nnnjbaF)(21nnnjbaF偶函数()()ftft只有余弦项,可能含直流204()cos()TnaftntdtT0nb2nnaF奇函数()()ftft只有正弦项0na204()sin()TnbftntdtT2nnbjF奇谐函数()()2Tftft只有奇次谐波,可能含直流2000,2,4,4()cos()1,3,5,TnnaftntdtnT2000,2,4,4()sin()1,3,5,TnnbftntdtnT偶谐函数()()2Tftft只有偶次谐波2001,3,5,4()cos()0,2,4,TnnaftntdtnT2001,3,5,4()sin()0,2,4,TnnbftntdtnT2nnnjbaF2nnnjbaF典型周期信号的傅里叶级数傅里叶变换表1)(t)0(1)(jtuet)(21)0(2)(22||tuet1()()2反变换常用2)(1)(jtutetjt)(')]()([)(auauaatSa)()()()(nnjt)(2)()(aaSaatuatujtu1)()(2)]2([||0||||1)(aSaaatatattfjtutut2)()()sgn(2'1)()(jttu00()jttte002()jte000cos[()()]t000sin[()()]tj卷积和表)(1nx)(2nx)()()()(1221nxnxnxnx)(n)(nx)(nxna)(nuaan111)(nu)(nu1nna1na21)(21211211aaaaaannnananan)1(nan2)1()1(1aaaannnn)1()1(61nnnZ变换)(nx的单边Z变换定义为:0)()()(nnznxnxzX双边Z变换为:nnznxnxzX)()()(如果)(nx为因果序列,则双边Z变换与单边Z变换是等同的。Z变换表)(nx0)()(nnznxzX)(n1)(nu1zz1||z)(nnu2)1(zz注:01)(nnzzznu两边求导即得)(2nun3)1()1(zzz注:02)1()(nnzzznnu两边求导即得)(nuanazzaz||)(kuenezzez||)(nunan2)(azaz)(1nunan2)(azz)(2nuann3)()(azazaz)(0nuenjnjezz01||z)()cos(0nun1cos2)cos(020zzzz1||z)()sin(0nun1cos2sin020zzz1||z)()cos(0nunen2020cos2)cos(zzzz||z)()sin(0nunen2020cos2sinzzz||z傅里叶变换的性质性质时域)(tf频域)(F线性niiitfa1)(niiiFa1)(对称性)(tF)(2f尺度变换)(atf)(1aFa时移)(tf)(F)(0ttf0)(tjeF频移0)(tjetf)(0F)cos()(0ttf)]()([2100FF)sin()(0ttf)]()([2100FF时域微分dt
本文标题:信号与系统重要公式总结
链接地址:https://www.777doc.com/doc-5009806 .html