您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 大学物理下练习试卷及答案
1.宽为b的无限长平面导体薄板,通过电流为I,电流沿板宽度方向均匀分布,求:(1)在薄板平面内,离板的一边距离为b的M点处的磁感应强度;(2)通过板的中线并与板面垂直的直线上的一点N处的磁感应强度,N点到板面的距离为x。解:建立如图所示的坐标系,在导体上取宽度为dy窄条作为电流元,其电流为ybIIdd(1)电流元在M点的磁感强度大小为ybybIybIBd)5.1(2)5.1(2dd00方向如图所示M点的磁感强度大小为2ln2d)5.1(2d0220bIybybIBBbb磁感强度方向沿x轴负方向。(2)电流元在N点的磁感强度大小为yyxbIyxIBd22dd220220根据电流分布的对称性,N点的总的磁感强度沿y由方向。N点的磁感强度大小为xbarctgbIyyxbIyxxByxxBBbby2d2dd0222202222磁感强度方向沿y轴正方向。2.两根长直导线沿半径方向引到铁环上的A、B两点,并与很远的电源相连,如图所示,求环中心O的磁感应强度。解:设两段铁环的电阻分别为R1和R2,则通过这两段铁环的电流分别为2121RRRII,2112RRRII两段铁环的电流在O点处激发的磁感强度大小分别为2222121201101RRRRIRIB2222221102202RRRRIRIBxbNMb2/bIxoyydyBdBdOABI121I2I2R1R根据电阻定律SrSlR可知2121RR所以21BBO点处的磁感强度大小为021BBB3.在半径R=1cm的无限长半圆柱形金属薄片中,有电流I=5A自下而上通过,如图所示,试求圆柱轴线上一点P的磁感应强度。解:在处取平行于电流的宽度为d的窄条作为电流元,其电流大小为ddII电流元Id在P点处激发的磁感强度大小为d22dd00RIRIB由于电流分布的对称性,P的磁感强度大小)(1037.601.05104dsin2dsind5272000TRIRIBBBx方向沿x轴正方向。4.一个塑料圆盘,半径为R,电荷q均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为。求圆盘中心处的磁感应强度。解:在圆盘上取半径为r、宽度为dr的同心圆环,其带电量为rrRqqd2d2圆环上的电流为rrRqrrRqTrrRqtqId2d2d2ddd222dI在圆心处激发的磁感强度大小为rRqrrRqrrIBd2d22dd20200圆盘中心处的磁感强度大小RqrRqBBR2d2d0020方向垂直于纸面。5.两平行长直导线相距d=40cm,通过导线的电流I1=I2=20A,电流流向如图所示。求(1)两导线所在平面内与两导线等距的一点P处的磁感应强度。(2)通过图中斜线所示面积的磁通量(r1=r3=10cm,l=25cm)。解:(1)两导线电流的P点激发的磁感强度分别为IPRdBdxyrRrd)(22211101rrIB,)(22211202rrIBP点的磁感强度为)(10420.02201042)(225722111021TrrIBBB方向垂直于纸面向外。(2)在矩形面上,距离左边导线电流为r处取长度为l宽度为dr的矩形面元,电流I1激发的磁场,通过矩形面元的磁通量为rlrISBd2dd1011电流1I激发的磁场,通过矩形面积的磁通量为)(101.13ln1010.030.0ln225.020104ln2d2d667121101011211WbrrrlIrlrIrrr同理可得,12通过矩形面积的磁通量为162)(102.2Wb6.在半径为R的无限长金属圆柱体内部挖去一半径为r的无限长圆柱体,两柱体的轴线平行,相距为d,如图所示。今有电流沿空心柱体的轴线方向流动,电流I均匀分布在空心柱体的截面上。分别求圆柱轴线上和空心部分轴线上o、o点的磁感应强度大小。解:(a)设金属圆柱体在挖去小圆柱前在o、o处激发的磁感强度由安培环路定理求得01oB22202220101222drRIddrRIddIBo(b)设被挖去小圆柱在o、o处激发的磁感强度大小分别为2oB和2oB根据安培环路定理,得02oB22202220202222rrRIdrrRIddIBo1I1I1r2r3rldP1rrrdRrdoo(c)挖去小圆柱后在o、o处的磁感强度大小分别为2220212rrRIdBBBooo,2220212drRIdBBBooo1.在电视显象管的电子束中,电子能量为12000eV,这个显象管的取向使电子水平地由南向北运动。该处地球磁场的竖直分量向下,大小为5105.5T。问(1)电子束受地磁场的影响将偏向什么方向?(2)电子的加速度是多少?(3)电子束在显象管内在南北方向上通过20cm时将偏移多远?解:(1)电子的运动速度为mEk2,(偏向东)。(2)电子受到的洛仑兹力大小为Bef电子作匀速圆周运动,其加速度大小为)/(1028.6101.9106.1120002105.5101.9106.12214311953119smmEBmeBmemfak(3)匀速圆周运动半径为)(72.6101.9106.1120002105.5106.1101.92311951931mmEeBmeBmRk0298.072.62.0sinRlmmmRx3)(1098.2)0298.011(72.6)cos1(322.在霍耳效应实验中,宽1.0cm、长4.0cm、厚3100.1cm的导体沿长度方向载有30mA的电流,当磁感应强度大小B=1.5T的磁场垂直地通过该薄导体时,产生5100.1V的霍耳电压(在宽度两端)。试由这些数据求:(1)载流子的漂移速度;(2)每立方厘米的载流子数;(3)假设载流子是电子,画出霍耳电压的极性。解:(1)BbU,)/(1067.6100.15.1100.1425smBbURBlxBI(2)nedIBU)(108.2100.1106.1100.15.1103032751953mUedIBn(3)霍耳电压的极性如图所示。3.截面积为S、密度为的铜导线被弯成正方形的三边,可以绕水平轴OO转动,如图所示。导线放在方向竖直向上的匀强磁场中,当导线中的电流为I时,导线离开原来的竖直位置偏转一个角度而平衡。求磁感应强度。若S=2mm2,=8.9g/cm3,=15°,I=10A,磁感应强度大小为多少?解:磁场力的力矩为coscoscos2212BIllBIlFlMF重力的力矩为sin2sin212sin22221gSllgSllgSlMmg由平衡条件mgFMM,得sin2cos22gSlBIl)(1035.915101028.9109.822363TtgtgIgSB4.半径为R=0.1m的半圆形闭合线圈,载有电流I=10A,放在均匀磁场中,磁场方向与线圈平面平行,如图所示。已知B=0.5T,求线圈所受力矩的大小和方向(以直径为转轴);解:由线圈磁矩公式BpMm)(0785.05.01.0211021sin22mNBRIBpMm方向沿直径向上。1.如图所示,在纸面所在平面内有一根通有电流为I的无限长直导线,其旁边有一个边长为l的等边三角形线圈ACD,该线圈的AC边与长直导线距离最近且相互平行,今使线圈ACD在纸面内以匀速v远离长直导线运动,且v与长直导线相垂直。求当线圈AC边与长直导线相距为a时,线圈ACD内的动生电动势。解:通过线圈ACD的磁通量为OOIFmg1l2lIBR3323ln33)23(d302]30cos[2dd0030cos0IalalaIrtgrlarISBlaaSSmm由于tadd,所以,线圈ACD内的动生电动势为]23)231[ln(33dd0alalItmi2.如图所示,无限长直导线中电流为i,矩形导线框abcd与长直导线共面,且ad//AB,dc边固定,ab边沿da及cb以速度v无摩擦地匀速平动,设线框自感忽略不计,t=0时,ab边与dc边重合。(1)如i=I0,I0为常量,求ab中的感应电动势,ab两点哪点电势高?(2)如tIicos0,求线框中的总感应电动势。解:通过线圈abcd的磁通量为0102020ln2d2dd100llllirlriSBlllSSmm(1)由于tl2,所以,ab中感应电动势为01000010200ln2lndd2ddlllIllltlItmi由楞次定律可知,ab中感应电动势方向由b指向a,即a点为高电势。(2)由于tIicos0和tl2,所以,ab中感应电动势为lIACaDrrd1l0l2liABabcdrrd010000102001020ln)sin(cos2lndd2lndd2ddllltttIllltilllltlitmi3.如图所示,AB和CD为两根金属棒,长度l都是1m,电阻R都是4,放置在均匀磁场中,已知磁场的磁感应强度B=2T,方向垂直于纸面向里。当两根金属棒在导轨上分别以v1=4m/s和v2=2m/s的速度向左运动时,忽略导轨的电阻,试求(1)两金属棒中各自的动生电动势的大小和方向,并在图上标出方向;(2)金属棒两端的电势差UAB和UCD;(3)金属棒中点O1和O2之间的电势差。解:(1))(841211VBl,方向A→B)(421222VBl,方向C→D(2))(5.04248221ARI)(645.081VIRUAB)(6VUUABCD(3))(321212111VUIRUABBO)(3212VUUCDBO,)(02121VUUUBOBOOO4.有一个三角形闭合导线,如图放置。在这三角形区域中的磁感应强度为kyexBBta20,式中0B和a是常量,k为z轴方向单位矢量,求导线中的感生电动势。解:atbatbatbxbatbxbSmmebBexbxxbBxexbxBxyyexBxyB500543200220002000601)512131(21d)(21ddddd|atmiaebBt50601dd,逆时针方向。ABDC1O2O12Ixybobxxd5.要从真空仪器的金属部件上清除出气体,可以利用感应加热的方法。如图所示,设线圈长l=20cm,匝数N=30匝(把线圈近似看作是无限长密绕的),线圈中的高频电流为ftII2sin0,其中I0=25A,频率f=105Hz,被加热的是电子管阳极,它是半径r=4mm而管壁极薄的空圆筒,高度hl,其电阻3105R,求(1)阳极中的感应电流最大值;(2)阳极内每秒产生的热量;(3)当频率f增加1倍时,热量增至几
本文标题:大学物理下练习试卷及答案
链接地址:https://www.777doc.com/doc-5011778 .html