您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 金融资料 > 《数学分析》课程标准
关于制定课程教学标准的通知各系(部):为推进专业和课程建设改革工作,完善教学课程体系。我校从2008年开始逐步推进专业标准和课程教学标准的制定工作。在前期品牌、特色专业的专业标准制订基础上,从10-11-1学期开始将逐步推行课程教学标准的制定工作。相关工作要求如下:1.对于2010级各专业教学计划中的新开设课程,需要按照课程教学标准模板(见附件)制定课程教学标准。2.在2010级各专业教学计划中,对各系部确定了专业核心课程。请各系(部)安排相关老师制定专业核心课程的课程教学标准。2010级专业教学计划中的新开设课程和专业核心课程的课程教学标准请于9月底之前交教务处。注:在课程教学标准在制定过程中,如有问题和建议,可向教务处反映,以期不断完善。苏州市职业大学教务处2010年6月11日附件:1.课程教学标准模板2.2010级各专业新开设课程一览表3.2010级专业核心课程一览表附件1:《数学分析》课程教学标准系(部)教育与人文科学系教研室数学教研室撰写人:李树斌时间2010年8月一、课程概述课程名称数学分析课程代码适用专业数学教育总学时276课程性质□核心课程、□通识课程、□拓展课程、□其他学分14课程地位课程适用专业(职业岗位与技术领域)描述;本课程在本专业课程体系中的地位;学习者在学习本课程之前应具备的前续知识与技能,及与后续课程的关系数学分析课是高校数学类专业的一门最重要的基础课,对学生数学思想的形成,后继课程的学习都有着重要的意义。数学分析不仅为各学科提供各种计算工具及方法,同时因其课程特点,贯穿高度抽象的方法、高度严密的推理、高度系统的结构,致力于培养学生科学严谨的思考习惯与认真细致的工作作风,其重要作用和对学生产生的影响是其他课程难以替代的。其教学内容极为丰富,是连接初等数学与高等数学的桥梁,是进一步学习复变函数论、微分方程、微分几何、概率论、实变函数、泛函分析以及数值分析等后继课程的基础。课程的目标是通过三个学期学习和系统的数学训练,使学生逐步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想方法,最终使学生的数学思维能力得到根本的提高。同时,培养学生良好的学习习惯,提高自我选择知识、吸取知识、创造知识的能力,为学生应用数学的理论和方法解决实际问题提供基本的数学素质。课程学习目标根据课程教学要求中明确要掌握的技能、知识(原理和方法),以及态度要求,确定学习目标;学习目标包括个人学习目标、团队学习目标。学习该课程的目标:1.使学生理解数学分析的基本概念,基本上掌握数学分析中的论证方法,获得较熟练的演算技能和初步应用的能力。2.通过本课程的学习,学生可以对近代应用数学的发展有一个初步的了解,进而提高学习数学的兴趣,提高应用所学数学知识解决实际问题的能力与意识,为进一步学习《复变函数论》、《微分方程》、《概率论》、《实数函数与泛函分析》等后继课程奠定基础。3.该课程是数学各专业硕士研究生入学考试中两门专业基础课程之一,在数学(一)、数学(二)、数学(三)、数学(四)及MBA数学考试中也占有相当的比重。课程学习形式学习形式可以是课堂、实验室、校内或校外实训现场、社会调研或服务;自学、小组学习、网络学习、;或综合性学习形式。为保证学生顺利实施和完成项目教学任务,本课程在理实一体化教室(专门的实训教室)完成教学过程,学生学习以教学互动学习、小组学习和网络学习等多种方式相结合的形式开展。注:1.对相近多专业使用本课程的,应分别予以描述。2.对于有项目教学模块的课程填写本表;对于以项目教学为主体的课程另填。二、课程内容和学时分配序号单元名称主要教学知识点学习目标及能力要求学习情境学时作业1预备知识和函数实数集的性质、函数的概念、复合函数和反函数、基本初等函数(1)理解实数的有序性、稠密性与封闭型;(2)理解函数的定义以及复合函数、反函数、有界函数、周期函数、奇函数和偶函数、单调函数和初等函数的定义,熟悉函数的各种表示方法;(3)牢记基本初等函数的定义、性质及其图像。会求初等函数的定义域、值域,会分析初等函数的复合关系。掌握几个特殊函数的表示方法。1.实数概述2.函数概念3.几种特殊类型的函数4.函数的运算5.初等函数8P35ex12,13P47Ex2,3,4,14P55Ex5,9,102极限数列极限的概念、性质与四则运算,数列收敛性的判别法,无穷大量的定义、性质和运算。函数极限的概念、基本性质,海涅定理;无穷小(大)量及其阶的概念。区间套定理、致密性定理、柯西收敛原理、有限覆盖定理(1)掌握数列极限的定义及相关概念;(2)理解并能证明收敛数列性质、极限的唯一性、单调性、保号性及不等式性质;(3)掌握并会应用收敛数列的四则运算定理、夹逼定理以及单调有界定理;(4)理解函数极限“”的定义,能运用定义证明与函数极限有关的某些命题;(5)掌握函数极限1.数列极限的概念;2.收敛数列的性质及运算;3.数列极限的存在条件;4.无穷小量与无穷大量20P76Ex6,8,9P92Ex7,9,11,12P106Ex3,5,7P118的基本性质;(6)掌握海涅定理,领会其实质以及证明的基本思路;(7)掌握两个重要极限;(8)掌握无穷小(大)量及其阶的概念,并由此求出某些函数的极限。(9)理解上、下确界的含义;(10)理解区间套定理、致密性定理、柯西收敛原理、有限覆盖定理;Ex3,6,8,9,11P126Ex4,5,10P139Ex3,4,6,7,83连续函数掌握连续函数的定义,理解一致连续的概念,掌握闭区间上连续函数的性质及零点定理的应用;1)理解间断点的概念,识别不同类型的间断点;(2)熟知复合函数的连续性和反函数的连续性;(3)掌握闭区间上连续函数的性质和运用;(4)理解一致连续的概念;1.函数极限的概念,单侧极限的概念;2.函数极限的性质与运算,两个重要极限归结原则,柯西准则。12P152Ex2,3,4,8,9,10P165Ex2,3,4,5,10,114导数与微分导数的概念,导数的几何意义,求导法则,微分的概念,高阶导数,高阶微分。(1)理解导数概念,明确其实际背景并给出物理、几何解析,明确可导与连续的关系;(2)掌握导数的四则运算法则,复合函数的求导法则,会求由参数方程所给出的函数的导数及反函数的导数;(3)理解函数在一点的微分的定义,可导与可微的一致性,能熟练求初等函数的微分;(4)掌握高阶导数1.导数概念,导数的几何意义;2.求导法则与导数公式;3.微分的定义,微分的运算法则,微分的应用;4.高阶导数与高阶微分。16P180Ex3,4,7,9P207Ex1,2,5,6,9,11P219Ex2,4,5与高阶微分的定义,会求高阶导数与高阶微分。5微分学中值定理三个中值定理,泰勒公式。(1)理解中值定理及几何意义,掌握三个中值定理的证明方法,能应用中值定理证明某些有关的命题;(2)掌握常用初等函数的泰勒公式,会进行近似计算并估计误差;1.洛尔中值定理、拉格朗日中值定理、柯西中值定理、罗必达法则;2.泰勒公式,某些函数的泰勒展开式,近似计算;10P229Ex2,3,67,8,9P240Ex2,3,4,56导数的应用罗比塔法则,,函数的升降、凸性与极值,平面曲线的曲率。(1)掌握函数的升降、凸性与极值的判定方法,求解函数作图及实际应用问题;(2)熟练应用罗比塔法则计算极限。1.函数特性讨论单调性、极值与最值、凹凸性拐点、渐近线;2.函数图象的讨论与描绘。14P250Ex2,3P276Ex2,4,5,10,127不定积分不定积分的概念与运算法则,不定积分换元法和分部积分法,求有理函数与部分无理函数不定积分的方法。(1)理解并掌握原函数与不定积分的关系及其几何意义;(2)掌握不定积分的线性运算法则,能熟练运用基本积分表中的公式;(3)熟练掌握换元积分法,分部积分法并能解决求积问题;(4)掌握特殊类型的初等函数的积分。如有理函数的积分、三角函数有理式的积分及某些无理函数的积分。1.原函数与不定积分概念,基本积分表,线性运算法则;2.换元积分法,分部积分法;3.有理函数积分法,三角函数有理式积分,几种无理函数的积分。18P284Ex2P294Ex1,2,3P304Ex2P314Ex2,38定积分定积分的概念、性质,微积分基本定理,换元积分法和分部积分法(1)理解定积分的概念及定积分存在的充要条件。(2)掌握可积函数类。(3)掌握定积分的第一中值定理及牛顿-莱布尼兹公式。(4)掌握定积分的1.定积分的概念,函数可积的必要条件,可积函数类;2.定积分的性质,积分中值定理;3.微积分基本定理,可变上限积分,牛顿-莱布尼14P9Ex9P21Ex2,3,4,5,6,7P31Ex1,2,3,6,8换元积分法和分部积分法。兹公式;4.积分法:换元积分法分部主积分法。P45Ex2,3,4,5,89定积分应用求面积,体积,弧长,曲率,压力,功及重心。(1)掌握定积分的几何应用---平面图形面积、平面曲线弧长、旋转体的体积和侧面积、平行截面已知的立体体积;(2)物理应用---质量、功、引力、压力。1.定积分的几何应用:平面图形的面积,微元法,已知截面面积函数的立体体积,旋转体的体积平面曲线的弧长与微分,旋转体的侧面积;2.定积分在物理上的应用:功、液体压力、重心、平均值。10P64Ex1,2,5,610数值级数上、下极限及其性质,数项级数及其敛散性概念,级数的基本性质,正项级数的判别法,任意项级数的判别法。(1)理解上极限与下极限的概念及其性质,会求上、下极限;(2)理解敛散性概念、级数收敛的性质,熟练求一些级数的和;(3)熟练利用正项级数的收敛原理,比较判别法,Cauchy、D`Alembert判别法及其极限形式,积分判别法判别正项级数的敛散性;(4)理解Leibniz级数,熟练利用Leibniz级数,Abel、Dirichlet判别法判别一般级数的敛散性。1.数项级数的收敛性:无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质;2.正项级数收敛原理:比较原理,达朗贝尔判别法,柯西判别法;3.任意项级数:交错级数与莱布尼兹判别法,条件收敛,绝对收敛定理。14P93Ex3,4,7,8,10P108Ex2,3,4,58,9P120Ex2,3,4,67,811函数级数函数项级数和函数列一致收敛的概念及其判别方法,一致收敛函数项级数和函数列的连续、可导和可(1)理解点态收敛、一致收敛和内闭一致收敛,函数列一致收敛的判别法;(2)掌握并应用函数项级数的Cauchy1.函数列与函数项级数收敛与一致性收敛性,函数列的极限函数、函数项级数的和函数,函数列与函14积性;幂级数的收敛半径和收敛域及其半径求法,函数的幂级数展开收敛原理,Weierstrass判别法,Abel、Dirichlet判别法;(3)掌握一致收敛级数的连续性、可导性和可积性;(4)求幂级数收敛半径,可以利用幂级数可导和可积性求幂级数的和;(5)掌握函数幂级数展开的条件,初等函数的幂级数展开;(6)了解Weierstrass第一逼近定理。数项级数的一致收敛概念,一致收敛柯西准则,优级数判别法;2.极限函数与和函数的分析性质(连续性,可积性,可微性)。P142Ex2,3,4,6,7,8,9P171Ex2,3,4,6,712广义积分无穷限广义积分和无界函数的广义积分概念、性质、判别法则等。(1)理解广义积分概念,了解无穷限广义积分和数项级数的关系,掌握比较判别法和柯西判别法(2)理解无界函数的广义积分概念、性质、判别法则(3)熟练计算广义积分。1.数项级数的收敛性:无穷级数收敛,发散等概念,柯西准则,收敛级数的基本性质;2.正项级数收敛原理:比较原理,达朗贝尔判别法,柯西判别法;3.任意项级数:交错级数与莱布尼兹判别法,条件收敛,绝对收敛定理。12P189Ex2,3,4,56,7P201Ex2,3,413多元函数及其连续性平面点集理论,多元函数的极限和连续,有界闭区域上连续函数的性质。(1)理解多元函数及其极限的概念;(2)了解二元函数的极限概念,二重极限和二次极限的关系和
本文标题:《数学分析》课程标准
链接地址:https://www.777doc.com/doc-5019275 .html