您好,欢迎访问三七文档
2038555、205088博世花倾城HHT,希尔伯特-黄变换希尔伯特一黄变换(Hilbert一HuangTransform,简称HHT)是由美籍华裔NordenE.Huang教授于1998年的一次国际会议上提出的一种新的处理非平稳信号的方法。它是分析非稳态资料的一种独特分析方法,可用于地震工程、地球物理探测、潜艇设计、结构损害侦测、卫星资料分析、血压变化和心律不整等各项研究。Hilbert一Huang变换是一种两步骤信号处理方法。首先用经验模态分解方法(EmpricalModalityDecompositionMethod,简称EMD)获得有限数目的固有模态函数(IntrinsicModeFunetion,简称IMF),然后再利用Hilbert变换和瞬时频率方法获得信号的时一频谱—Hilbert谱。与传统的信号或数据处理方法相比,HHT具有如下特点:(1)HHT能分析非线性非平稳信号。传统的数据处理方法,如傅立叶变换适合处理线性、平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。(2)HHT具有完全自适应性。HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。这点不同于傅立叶变换和小波变换。傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。我们也没有理由认为所选的小波基能够反映被分析数据或信号的特性。(3)HHT不受Heisenberg测不准原理制约——适合突变信号。傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。这就意味着如果要提高时间精度就得牺牲频率精度,反之亦然,故不能在时间和频率同时达到很高的精度,这就给信号分析处理带来一定的不便。而HHT不受Heisenberg测不准原理制约,它可以在时间和频率同时达到很高的精度,这使它非常适用于分析突变信号。(4)HHT的瞬时频率是采用求导得到的。傅立叶变换、短时傅立叶变换、小波变换有一个共同的特点,就是预先选择基函数,其计算方式是通过与基函数的卷积产生的。HHT不同于这些方法,它借助Hilbert变换求得相位函数,再对相位函数求导产生瞬时频率。这样求出的瞬时频率是局部性的,而且精度很高,而傅立叶变换的频率是全局性的,小波变换的频率是区域性的。
本文标题:HHT方法
链接地址:https://www.777doc.com/doc-5020850 .html