您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 空间几何体的表面积和体积(用)
1、表面积:几何体表面的面积2、体积:几何体所占空间的大小。表面积和侧面积•表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)•侧面积指立体图形的各个侧面的面积之和(除去底面)2020年4月24日星期五3时16分22秒云在漫步2020年4月24日星期五3时16分22秒云在漫步什么是面积?ahS21bahbhaS面积:平面图形所占平面的大小S=ababAahBChbaS)(21abh2rSrlS212212360rrnabArl圆心角为n0rc2020年4月24日星期五3时16分22秒云在漫步2020年4月24日星期五3时16分22秒云在漫步特殊平面图形的面积aas23212as正三角形的面积正六边形的面积正方形的面积aa223323216aaaSa2020年4月24日星期五3时16分22秒云在漫步2020年4月24日星期五3时16分22秒云在漫步多面体的表面积一般地,由于多面体是由多个平面围成的空间几何体,其表面积就是各个平面多边形的面积之和.棱柱的表面积=2底面积+侧面积棱锥的表面积=底面积+侧面积侧面积是各个侧面面积之和棱台的表面积=上底面积+下底面积+侧面积作直三棱柱、正三棱锥、正三棱台各一个,找出斜高CBAA1B1C1COBAPDC1D1A1ODBACB1斜高的概念2、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是什么形状的图形.ABCDABCABCD矩形等腰三角形等腰梯形把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?chhcbaS)=(直棱拄侧habcabchh棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图底侧表面积SSS2思考:把圆柱的侧面沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?rlr2长=宽=llSSr2=长方形圆柱侧长方形圆柱的侧面展开图是矩形2222()SrrlrrlOOrl2r底侧表面积SSS2把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?h'h''21chS=正棱锥侧h'h'侧面展开正五棱锥的侧面展开图底侧表面积SSS思考:把圆锥的侧面沿着一条母线展开,得到什么图形?展开的图形与原图有什么关系?rl180lnl=扇lR=扇rllllnSS扇扇圆锥侧==213602扇形圆锥的侧面展开图是扇形r2lOr2()Srrlrrl把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)h'h'')'21hccS(=正棱台侧侧面展开h'h'正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?下底上底侧表面积SSSS参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.r2lOrO’'r'2r圆台的侧面展开图是扇环lrrSS)21(==扇环圆台侧思考:把圆台的侧面沿着一条母线展开,得到什么图形?展开的图形与原图有什么关系?1r2rl扇环lrrSS)21(==扇环圆台侧lOrO’'r圆柱、圆锥、圆台三者的表面积公式之间有什么关系?lOOrlOr2222()Srrlrrl2()Srrlrrl2'2'()Srrrlrl棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h'h'它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;2、对应的面积公式')'cc21hS+(=正棱台C’=0'21chS=三棱锥C’=CchchS'=直棱柱S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)lr1=0r1=r2例3已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,aSBSD2360sin所以:243232121aaaSDBCSABC因此,四面体S-ABC的表面积.交BC于点D.解:先求的面积,过点S作,ABCBCSD几何体占有空间部分的大小叫做它的体积一、体积的概念与公理:公理1、长方体的体积等于它的长、宽、高的积V长方体=abc推论1、长方体的体积等于它的底面积s和高h的积V长方体=sh推论2、正方体的体积等于它的棱长a的立方V正方体=a3公理2、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。PQ祖暅原理定理1:柱体(棱柱、圆柱)的体积等于它的底面积s和高h的积。V柱体=sh二:柱体的体积推论:底面半径为r,高为h圆柱的体积是V圆柱=r2h三:锥体体积例2:如图:三棱柱AD1C1-BDC,底面积为S,高为h.ABDCD1C1CDABCD1ADCC1D1A答:可分成棱锥A-D1DC,棱锥A-D1C1C,棱锥A-BCD.问:(1)从A点出发棱柱能分割成几个三棱锥?3.1.锥体(棱锥、圆锥)的体积(底面积S,高h)注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积shV31三棱锥定理︰如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:推论:如果圆锥的底面半径是r,高是h,那么它的体积是:hSSV锥体=Sh3131V圆锥=πr2hShss/ss/hx四.台体的体积V台体=1h(s+ss'+s')3上下底面积分别是s/,s,高是h,则推论:如果圆台的上,下底面半径是r1.r2,高是h,那么它的体积是:31V圆台=πh)(222121rrrr五.柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,h为柱体高ShV0SS分别为上、下底面面积,h为台体高ShV31SSS为底面面积,h为锥体高上底扩大上底缩小例从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A-BCD,求它的体积是正方体体积的几分之几?RROORR球的体积:一个半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R的半球的体积相等。探究球1V=232=πR33球4V=πR3RROORR221πRR-πRR3第一步:分割O球面被分割成n个网格,表面积分别为:nSSSS...321,,则球的表面积:nSSSSS...321则球的体积为:设“小锥体”的体积为:iViVnVVVVV...321iSO知识点三、球的表面积和体积(O第二步:求近似和Oih由第一步得:nVVVVV...321nnhShShShSV31313131332211...iiihSV31iSiV第三步:转化为球的表面积RSVii31如果网格分的越细,则:RSRSRSRSVni3131313132...RSSSSSRni313132)...(①由①②得:334RV②球的体积:24πRSiSiVih的值就趋向于球的半径RRihiSOiV“小锥体”就越接近小棱锥。(1)若球的表面积变为原来的2倍,则半径变为原来的—倍。(2)若球半径变为原来的2倍,则表面积变为原来的—倍。(3)若两球表面积之比为1:2,则其体积之比是———。(4)若两球体积之比是1:2,则其表面积之比是———。例2:2422:134:1例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。ABCDD1C1B1A1OABCDD1C1B1A1O分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。略解:2222211113423,)2()2(22:aRSaRaaRaDBRDBDDBRt得:,中变题1.如果球O和这个正方体的六个面都相切,则有S=——。变题2.如果球O和这个正方体的各条棱都相切,则有S=——。2a22a关键:找正方体的棱长a与球半径R之间的关系OABCO例4已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.解:如图,设球O半径为R,截面⊙O′的半径为r,r332AB2332AO是正三角形,ABCROO,2例5、有三个球,一球切于正方体的各面,一球切于正方体的各侧棱,一球过正方体的各顶点,求这三个球的体积之比.作轴截面例2、如图,圆柱的底面直径与高都等于球的直径,求证:(1)球的表面积等于圆柱的侧面积.(2)球的体积等于圆柱体积的三分之二.O证明:R(1)设球的半径为R,24RS球则圆柱的底面半径为R,高为2R.得:2422RRRS圆柱侧圆柱侧球SS(2)3222RRRV圆柱334RV球圆柱球VV32
本文标题:空间几何体的表面积和体积(用)
链接地址:https://www.777doc.com/doc-5023911 .html