您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 2000年甘肃省兰州市中考数学试卷
2000年甘肃省兰州市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2000•兰州)平行于y轴的直线上任意两点坐标的关系是()A.纵坐标相等B.横坐标相等C.纵坐标和横坐标都相等D.都不相等2.(3分)(2009•黄石)一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<03.(3分)(2000•兰州)为考察某地区初三年级15000名学生的数学统一考试情况,从中抽了5本密封试卷,每本50分,进行分析,那么样本容量是()A.5B.50C.250D.150004.(3分)(2000•兰州)函数y=ax+b和y=ax2+bx+c(a≠0)在同一个坐标系中的图象可能为()A.B.C.D.5.(3分)(2000•兰州)关于x的方程(m2﹣m﹣2)x2+mx+1=0是一元二次方程的条件是()A.m≠﹣1B.m≠2C.m≠﹣1或m≠2D.m≠﹣1且m≠26.(3分)(2000•兰州)已知关于x的方程2kx2+(8k+1)x+8k=0有两个实根,则k的取值范围是()A.k>B.k且k≠0C.k=D.k且k≠07.(3分)(2000•兰州)有两个同心圆,大圆的直径AB交小圆于C、D,大圆的弦EF切小圆于C点,ED交小圆于G点,若AO=6,CO=4,则EG等于()A.B.C.D.8.(3分)(2000•兰州)已知扇形的圆心角为90°,半径为2,则扇形的面积是()A.πB.C.2πD.4π9.(3分)(2000•兰州)α、β都是锐角,且cosα<cosβ,则下列各式中正确的是()A.α<βB.cotα<cotβC.tanα<tanβD.sinα<sinβ10.(3分)(2000•兰州)如图,在Rt△ABC中,∠A=90°,AB=AC=a,⊙O分别与AB、AC相切于E、F点,圆心O在BC上,则⊙O的半径等于()A.B.C.D.11.(3分)(2000•兰州)在半径为5厘米的圆中有一个内接正六边形,则此六边形的边心距是()A.2.5厘米B.3厘米C.4厘米D.厘米12.(3分)(2000•兰州)已知两圆的半径之和为12cm,半径之差为4cm,圆心距为4cm,则两圆的位置关系为()A.外离B.外切C.相交D.内切二、填空题(共12小题,每小题3分,满分36分)13.(3分)(2000•兰州)若二次方程kx2﹣(2k﹣1)x+k﹣2=0没有实数根,则k的最大整数值是_________.14.(3分)(2000•兰州)若,则点P(x,y)在_________象限.15.(3分)(2000•兰州)函数y=的顶点坐标是_________,对称轴方程是_________.16.(3分)(2000•兰州)某厂第一季度共生产钢190吨,二、三月份共生产150吨,求平均月增长率_________%.17.(3分)(2000•兰州)已知关于x的方程有增根,则a的值等于_________.18.(3分)(2000•兰州)已知抛物线y=ax2+bx+c经过原点和二、三、四象限,判断a、b、c的符号情况:a_________0,b_________0,C_________0.19.(3分)(2000•兰州)若等腰三角形ABC的顶角A=120°,AB=5,则BC=_________.20.(3分)(2000•兰州)点P是⊙O内一点,OP=2,如果⊙O的半径是3,那么过P点的最短弦长是_________.21.(3分)(2000•兰州)A、B、C是⊙O上三点,已知弦AC的长等于⊙O的半径,则∠ABC的度数是_________.22.(3分)(2000•兰州)如图,半圆与矩形的三边切于A、B、F,对角线AC交⊙O于点E,若⊙O的直径为8cm,则CE=_________cm.23.(3分)(2000•兰州)若一个扇形的弧长是12π,它的圆心角是120°,那么这个扇形的面积是_________.24.(3分)(2000•兰州)在Rt△ABC中,∠C=90°,3a=b,则∠A=_________度,sinA=_________.三、解答题(共11小题,满分60分)25.(4分)(2000•兰州)解方程:=26.(4分)(2000•兰州)过给定的⊙O上一点A(如图),画作⊙O的切线.27.(4分)(2000•兰州)计算:(1+sin45°﹣cos30°)(1﹣sin45°﹣cos30°)28.(6分)(2000•兰州)已知点(2,7)在函数y=ax2+b(a,b为常数)的图象上,且当x=时,y=5.(1)求a、b的值;(2)如果点(,m)与(n,17)也在函数图象上,求m,n的值.28.(4分)(2000•兰州)一次函数y=kx+b与反比例函数y=的图象的两个交点的横坐标是和﹣1,求一次函数的解析式.30.(6分)(2000•兰州)一个一次函数的图象平行于直线y=﹣2x,并且经过点A(﹣4,2),求这个函数的解析式,并求出函数图象与x轴的交点B的坐标.31.(6分)(2000•兰州)如图,已知半圆O,交AB于D、AC于E,BC是直径,若∠A=60°,AB=16,AC=10,求AD、AE、DE的长.32.(6分)(2000•兰州)如图,圆内接四边形ABCD的外角∠DCH=∠DCA,DP⊥AC垂足为P,DH⊥BH垂足为H,求证:CH=CP,AP=BH.33.(6分)(2000•兰州)如图,已知在⊙O中,延长半径OC到B,使BC=OC,AC是弦,并且AC=BC,连接AB,求证:AB是⊙O的切线.34.(7分)(2000•兰州)如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.求证:(1)AE+BF=AB;(2)EF2=4AE•BF.35.(7分)(2000•兰州)如图,直线AB过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知点B的坐标是(1,1),(1)求直线AB和抛物线所表示的函数解析式;(2)如果在第一象限,抛物线上有一点D,使得S△OAD=S△OBC,求这时D点坐标.2000年甘肃省兰州市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2000•兰州)平行于y轴的直线上任意两点坐标的关系是()A.纵坐标相等B.横坐标相等C.纵坐标和横坐标都相等D.都不相等考点:坐标与图形性质.菁优网版权所有分析:本题要注意理解好平面直角坐标系的有关点的坐标规律,与y轴平行的直线上的所有点的横坐标是相等的,这点可以画图自己理解选择也可以根据相关知识的总结来完成.解答:解:由平行于坐标轴的直线上点的坐标特可知,与y轴平行的直线上的所有点的横坐标是相等的,故选B.点评:解答本题要注意理解好有关和x轴,y轴平行的一些点的坐标规律,注意理解好题意,避免误选.2.(3分)(2009•黄石)一次函数y=kx+b的图象经过第一、三、四象限,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0考点:一次函数图象与系数的关系.菁优网版权所有分析:根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.解答:解:由一次函数y=kx+b的图象经过第一、三、四象限,又由k>0时,直线必经过一、三象限,故知k>0.再由图象过三、四象限,即直线与y轴负半轴相交,所以b<0.故选B.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.3.(3分)(2000•兰州)为考察某地区初三年级15000名学生的数学统一考试情况,从中抽了5本密封试卷,每本50分,进行分析,那么样本容量是()A.5B.50C.250D.15000考点:总体、个体、样本、样本容量.菁优网版权所有分析:根据样本容量的定义作答.解答:解:依题意,可知样本容量是50×5=250.故选C.点评:本题主要考查了样本容量的定义:样本容量是样本中包含的个体的数目.注意样本容量不能带单位.4.(3分)(2000•兰州)函数y=ax+b和y=ax2+bx+c(a≠0)在同一个坐标系中的图象可能为()A.B.C.D.考点:二次函数的图象;一次函数的图象.菁优网版权所有分析:本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数ax2+bx+c的图象相比较看是否一致.解答:解:B、C中,由二次函数图象开口方向得到a的符号,与由一次函数的图象得到a的符号,两者相矛盾,排除B、C;A、D中,由抛物线图象可知,开口向上,a>0,对称轴x=﹣>0,b<0;而选项A由一次函数的图象可知a>0b>0,两者相矛盾,排除A.只有D正确.故选D.点评:解决此类问题步骤一般为:(1)根据图象的特点判断a取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.5.(3分)(2000•兰州)关于x的方程(m2﹣m﹣2)x2+mx+1=0是一元二次方程的条件是()A.m≠﹣1B.m≠2C.m≠﹣1或m≠2D.m≠﹣1且m≠2考点:一元二次方程的定义.菁优网版权所有分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).解答:解:根据一元二次方程的概念,得m2﹣m﹣2≠0,即(m﹣2)(m+1)≠0,∴m≠﹣1且m≠2.故选D.点评:特别要注意一元二次方程中a≠0的条件,这是在做题过程中容易忽视的知识点.6.(3分)(2000•兰州)已知关于x的方程2kx2+(8k+1)x+8k=0有两个实根,则k的取值范围是()A.k>B.k且k≠0C.k=D.k且k≠0考点:根的判别式.菁优网版权所有分析:在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有两个实数根下必须满足△=b2﹣4ac≥0.解答:解:根据题意列出方程组,解之得k且k≠0.故选B.点评:本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.7.(3分)(2000•兰州)有两个同心圆,大圆的直径AB交小圆于C、D,大圆的弦EF切小圆于C点,ED交小圆于G点,若AO=6,CO=4,则EG等于()A.B.C.D.考点:切割线定理;勾股定理;垂径定理.菁优网版权所有分析:连接OE,在Rt△OCE中,由勾股定理可求出CE的长;同理可在Rt△ECD中,由勾股定理求得ED的长;由于EC是小圆的切线,ED是小圆的割线,根据切割线定理即可求得EG的长.解答:解:如图,连接OE;∵EF是小圆的切线,∴OC⊥EF;Rt△ECO中,OE=OA=6,OC=4,由勾股定理,得:EC==2;Rt△ECD中,CD=8,由勾股定理,得:ED==2;已知EF切小圆于C,由切割线定理,得:EG=EC2÷ED=(2)2÷2=.故选C.点评:此题主要考查了切线的性质、勾股定理及圆切割线定理的应用.8.(3分)(2000•兰州)已知扇形的圆心角为90°,半径为2,则扇形的面积是()A.πB.C.2πD.4π考点:圆锥的计算.菁优网版权所有分析:扇形的面积=,把相应数值代入即可求解.解答:解:扇形的面积==π,故选A.点评:本题考查扇形面积公式的求法.9.(3分)(2000•兰州)α、β都是锐角,且cosα<cosβ,则下列各式中正确的是()A.α<βB.cotα<cotβC.tanα<tanβD.sinα<sinβ考点:锐角三角函数的增减性.菁优网版权所有分析:根据锐角三角函数的增减性解答.解答:解:∵α、β都是锐角,且cosα<cosβ,∴α>β,∴cotα<cotβ,tanα>tanβ,sinα>sinβ.故选B.点评:锐角三角函数值的变化规律:正弦值和正切值都是随着角的增大而增大,余弦值和余切值都是随着角的增大而减小.10.(3分)(2000•兰州)如图,在Rt△ABC中,∠A=90°,AB=AC=a
本文标题:2000年甘肃省兰州市中考数学试卷
链接地址:https://www.777doc.com/doc-5027533 .html