您好,欢迎访问三七文档
10420178ChineseOpticsVol.10No.4Aug.20172017-03-072017-04-14No.201204515No.20150101017JCNo.2016201SupportedbyNationalForestryPublicWelfareFoundationofChinaNo.201204515NaturalScienceFounda-tionofJinlinProvinceofChinaNo.20150101017JCYouthInnovationPromotionAssociationCASNo.20162012095-1531201704-0438-1112*121231.1300332.1300333.150040。4、、Retinex。、、。9。。RetinexTP394.1Adoi10.3788/CO.20171004.0438ReviewofimageenhancementalgorithmsWANGHao12*ZHANGYe12SHENHong-hai12ZHANGJing-zhong31.KeyLaboratoryofAirborneOpticalImagingandMeasurementChineseAcademyofSciencesChangchun130033China2.ChangchunInstituteofOpticsFineMechanicsandPhysicsChineseAcademyofSciencesChangchun130033China3.HeilongjiangForestProtectionInstituteHarbin150040China*CorrespondingauthorE-mailwanghao7600@163.comAbstractImageenhancementalgorithmscanenhancecontrastbetweenthewholeandpartialimagesandhighlightthedetailsofimages.Italsocanmaketheenhancedimagesmoreinlinewiththevisualcharacteris-ticsofthehumaneyesanditappliestomachineidentificationwhichhasawiderangeofapplicationsinmili-taryandcivilianfields.Basedontheprincipleofimageenhancementalgorithmfourtypesofimageenhance-mentalgorithmsandtheirimprovedalgorithmsaresummarizedinthispaper.Thesealgorithmsincludehisto-gramequalizationimageenhancementalgorithmwavelettransformimageenhancementalgorithmpartialdif-ferentialequationimageenhancementalgorithmandRetineximageenhancementalgotithm.Theseimprovedal-gorithmswhichcombinethehumanvisualcharacteristicsnoisesuppressionbrightnesspreservingandinfor-mationentropymaximizationcanfurtherimprovethequalityofimagesinadditiontoenhancingthecontrast.Inthispaperninetypicalimageenhancementalgorithmsareimplementedandtheirenhancementeffectsarecomparedwithsubjectiveandobjectiveevaluationmethods.Theadvantagesanddisadvantagesoftheseen-hancementalgorithmsareanalyzedandthecalculationtimeofthealgorithmsaregiven.Thestudyontheseal-gorithmscanpromotetheimageenhancementtechnologytoahigherlevelsoastomaketheimageenhance-menttechnologyplayanimportantroleinmanyfields.KeywordsimageenhancementhistogramequalizationwavelettransformpartialdifferentialequationRet-inextheory1。。、、1。。1。。2。。3。。4。。。30。HE、、Retinex。HE。HEPDF2-4。HEBBHE5DSIHESEHEHE6-9MMBEBHE7LMHE8WT10-17。kneegamma18。19-20。21。PDE22-27。TotalVaria-tionModelTVPDE934428。2629。Retinex30-35。MRF“”36。ADOFFTRetinex37。38。4。22.12。HECDF3。2.1.1I∈IijLIijijIij∈0L-1Ipk=nkNk=01…L-11Nnkk。Ick=∑ki=0pik=01…L-1.2fk=L-1×ck.3。4。2.1.2BBHE5。BBHEI2ILIUI=IL∪IUIL∩IU=。DSIHE26。DSIHE。MMBE-BHE7。LMHE8Wever-Fech-ner。flgk=lgk×λ-1+1lgL-1×λ-1+14k。4pk。pk。SEHE9。SEHEM×NhkM×N04410Sk=-∑Mm=1∑Nn=1hkmnlog2hkmn5fk=Sk/∑L-1l=0l≠kSl.6fkSEHEFk=∑kl=0fl7。SEHE。2.2WavelettransformWTFourier。。ψxφx10fx=∑kcj0kφj0kx+∑!j=j0∑kdjkψjkx8j0cj0kdjk。2.2.1fxyDWT11。WT13、12-13。。。14-15。1。2。3Wo=Wi+G×T-1Wi>TG×Wi|Wi|≤TWi-G×T-1Wi<-T{9GTWiWo。4。。16-17。2.2.2。kneegammaKGWTkneegamma18。KGWT。kneegammapx=xx<tax3+bx2+cx+dγx≥t{10abcdtγgamma。19。H=-∑PlgP11P。20。144421Curvelettrans-form。2.3PartialdifferentialequationPDE。fxyxy∈Ω=0≤x≤N-10≤y≤M-1{}Ixygx=fxyx=fx+1y-fxy12gy=fxyy=fxy+1-fxy.13p∈ΩVIp=gxgyT。。22-23。24-25。2.3.1VI'pVIpI'IVI'pVIpI'II'I。IPDEI'VI'p=k·VIpp∈Ω14VI'pkk>1k。14II'p=k·Ip+p∈Ω15。I'pIpk。0~255。15I'p。I'p。15fpfp∈0255p∈Ω16∫∫Ωfp-VI'2dΩ.1626。27。2.3.2TotalvariationmodelTVPDE28TVPDE。E=∑x∈fEd+Eg17EdEg。Ed=λdf-ν218Eg=λgfx-Gx2+fy-Gy2219λdλgffxxfyyνGxGy。TVPDEfp181917E。fp∈0255。。2914S=1-cos‖u‖-ba-b·π()[]·a2·u‖u‖20uab。ba0a。26244100+!|VI'p|=cπ/2·arctank·|VIp|21ck。2.4RetinexRetinexRetinaCor-tex。RetinexLand3031。2.4.1RetinexRetinexRijLij32-33Iij=Rij×Lij22ijIijRijLij。Retinex。34。22RetinexSSRlgRij=lgIij-lgLij.23LijLij=Iij*Fij24*。Fij。Fij=Ke-r2/c225Krc。RetinexRetinexMSR35。MSR。MSRlgRij=∑Kk=1WklgIij-lgLij26WkK。。2.4.2RetinexRetinex。36MRFRetinex。“”。37ADOFFTRetinex。38。33.1HE4、BBHE5、LMHE8、WT11、KGWT18、PDE26、TVPDE28、SSR33MSR359。、。12。HE。BBHE。LMHE344411Fig.1Enhancedimagesobtainedbydifferentalgorithmsandtheircorrespondinghistograms122Fig.2Enhancedimagesobtainedbydifferentalgorithmsandtheircorrespondinghistograms244410。WT。KGWT。PDETVPDE。TVPDE。SSRMSR。MSR。3.2、。Cij=1N∑n=kn=-k∑m=km=-k‖Iij-Ii+mj+n‖27IijN。。R=Gt-Gbσ28GtGbσ。H=-∑Mi=0pklog2pk29pkkM。2、1。1212。1Tab.1ObjectiveevaluationresultsofimagesqualityobtainedbydifferentalgorithmsEvaluationresultOriginalHEBBHELMHEWTKGWTPDETVPDESSRMSR12121212121212121212Contrast8.718.331.724.925.326.828.530.529.033.924.936.133.542.338.128.423.738.027.430.6Signaltonoiseratio7.59.410.312.59.714.113.913.611.410.312.413.923.013.728.316.330.621.532.924.9Informationentropy1.63.03.73.43.43.73.94.03.84.33.64.64.24.74.14.54.85.15.15.01。。、。Reit-nex。3.3VS2010IntelCorei5-3337U1.8GHzCPU4G932。2msTab.1ComputationtimeofdifferentalgorithmsmsResolution/pixel×pixelHEBBHELMHEWTKGWTPDETVPDESSRMSR256×256357182217281330640×5121115349510890116661251024×1024364510930638127731620834354442Retinex。4。、、39-43。、。。。GPUGraphicsProcessingUnit。GPU。GPU。4。。1.J.201694423-431.HAOZCWUCYANGHetal..Imagedetailenhancementmethodbasedonmulti-scalebilateraltexturefilterJ.Chi-neseOptics201694423-431.inChinese2ZIMMERMANJBPIZERSMSTAABEVetal..Anevaluationoftheeffectivenessofadaptivehistog
本文标题:图像增强算法综述
链接地址:https://www.777doc.com/doc-5035432 .html