您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 三角形的概念与内角和
第1页(共17页)一.选择题(共19小题)1.(2016秋•钦州期末)如图所示,以BC为边的三角形共有()A.1个B.2个C.3个D.4个【分析】根据三角形的定义(由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形)找出图中的三角形.【解答】解:以BC为边的三角形有△BCE,△BAC,△DBC,故选C.【点评】本题考查了三角形的定义.注意:题目要求找“图中以BC为边的三角形的个数”,而不是找“图中三角形的个数”.2.(2017•鱼峰区模拟)已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为()A.2cmB.3cmC.4cmD.5cm【分析】设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x﹣1)cm,根据三角形的周长即可求得x,进而求解.【解答】解:设大小处于中间的边长是xcm,则最大的边是(x+1)cm,最小的边长是(x﹣1)cm.则(x+1)+x+(x﹣1)=12,解得:x=4,则最短的边长是:4﹣1=3cm.故选B.【点评】本题考查了三角形的周长,理解三边长的设法是关键.3.(2016秋•临河区期中)如图,图中三角形的个数为()第2页(共17页)A.3个B.4个C.5个D.6个【分析】由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,据此进行判断即可.【解答】解:图中的三角形为:△ABD,△ACE,△DCE,△ACD和△ABC,有5个三角形,故选(C).【点评】本题主要考查了三角形的概念,解题时注意:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.4.(2017•大庆)在△ABC中,∠A,∠B,∠C的度数之比为2:3:4,则∠B的度数为()A.120°B.80°C.60°D.40°【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠B的度数为:60°.故选C.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.5.(2017•株洲)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()第3页(共17页)A.145°B.150°C.155°D.160°【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x°,∠B=2x°,∠C=3x°,∴6x=180,∴x=30,∵∠BAD=∠B+∠C=5x=150°,故选B.【点评】本题考查三角形内角和定理、三角形的外角的性质等知识,学会构建方程解决问题,属于基础题.6.(2017•长春)如图,在△ABC中,点D在AB上,点E在AC上,DE∥BC.若∠A=62°,∠AED=54°,则∠B的大小为()A.54°B.62°C.64°D.74°【分析】根据平行线的性质得到∠C=∠AED=54°,根据三角形的内角和即可得到结论.【解答】解:∵DE∥BC,∴∠C=∠AED=54°,∵∠A=62°,∴∠B=180°﹣∠A﹣∠C=64°,故选C.第4页(共17页)【点评】本题考查了平行线的性质,三角形的内角和,熟练掌握三角形的内角和是解题的关键.7.(2017•南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.8.(2017春•山亭区期末)若△ABC三个内角的度数分别为m、n、p,且|m﹣n|+(n﹣p)2=0,则这个三角形为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得出m、n、p的关系,再判断三角形的类型.【解答】解:∵|m﹣n|+(n﹣p)2=0,∴m﹣n=0,n﹣p=0,∴m=n,n=p,∴m=n=p,∴三角形ABC为等边三角形.故选B.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角形的性质,熟练掌握绝对值、非负数等考点的运算.第5页(共17页)9.(2014秋•惠城区校级月考)下列说法中正确的是()A.三角形的内角中至少有两个锐角B.三角形的内角中至少有两个钝角C.三角形的内角中至少有一个直角D.三角形的内角中至少有一个钝角【分析】利用三角形的特征分析.【解答】解:根据三角形的内角和是180度可知:A、三角形的内角中至少有两个锐角,正确;B、三角形的内角中最多有1个钝角,故不对;C、三角形的内角中最多有一个直角,故不对;D、三角形的内角中最多有1个钝角.故不对;故选A.【点评】主要考查了三角形的定义和分类.10.(2014秋•蒙山县校级月考)三角形按角分类可以分为()A.锐角三角形、直角三角形、钝角三角形B.等腰三角形、等边三角形、不等边三角形C.直角三角形、等边直角三角形D.以上答案都不正确【分析】根据三角形的分类情况可得答案.【解答】解:三角形按角分类可以分为锐角三角形、直角三角形、钝角三角形,故选:A.【点评】此题主要考查了三角形的分类,关键是掌握三角形的分类一种是按边分类,另一种是按角分类.11.(2017春•敦煌市期中)直角三角形的一个锐角是另一个锐角的4倍,那么这个锐角的度数是()A.18°B.36°C.54°D.72°【分析】设这个锐角度数是x,根据直角三角形两锐角互余表示出另一个锐角,第6页(共17页)然后列方程求解即可.【解答】解:设这个锐角度数是x,则另一个锐角度数是(90﹣x)°,由题意得,x=4(90﹣x),解得x=72°,所以,这个锐角的度数是72°.故选D.【点评】本题考查了直角三角形两锐角互余的性质,熟记性质并表示出另一个锐角,然后列出方程是解题的关键.12.(2016•昆明校级模拟)如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35°B.55°C.60°D.70°【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.【解答】解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,熟记性质是解题的关键.13.(2016春•高青县期中)如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()第7页(共17页)A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A【分析】在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.【解答】解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选B.【点评】本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.(2015春•宜阳县期末)试通过画图来判定,下列说法正确的是()A.一个直角三角形一定不是等腰三角形B.一个等腰三角形一定不是锐角三角形C.一个钝角三角形一定不是等腰三角形D.一个等边三角形一定不是钝角三角形【分析】根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).【解答】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该第8页(共17页)选项错误;B、如等边三角形,既是等腰三角形,也是锐角三角形,故该选项错误;C、如顶角是120°的等腰三角形,是钝角三角形,也是等腰三角形,故该选项错误;D、一个等边三角形的三个角都是60°.故该选项正确.故选D.【点评】此题考查了三角形的分类方法,理解各类三角形的定义.15.(2015秋•舟山校级月考)下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形类型的是()A.B.C.D.【分析】根据三角形的分类:直角三角形、锐角三角形、钝角三角形进行判断即可.【解答】解:A、知道两个角,可以计算出第三个角的度数,因此可以判断出三角形类型;B、露出的角是钝角,因此是钝角三角形;C、露出的角是锐角,其他两角都不知道,因此不能判断出三角形类型;D、露出的角是钝角,因此是钝角三角形;故选:C.【点评】此题主要考查了三角形,关键是掌握三角形的分类.16.(2017•相城区模拟)若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形第9页(共17页)【分析】根据三角形内角和定理可分别求得每个角的度数,从而根据最大角的度数确定其形状.【解答】解:依题意,设三角形的三个内角分别为:2x,7x,4x,∴2x+7x+4x=180°,∴7x≈97°,x=13.85°.7x=97°∴这个三角形是钝角三角形.故选:C.【点评】此题主要考查学生对三角形内角和定理及三角形形状的判断的综合运用.17.(2017•新城区校级模拟)如图,在△ABC中,∠BAC=56°,∠ABC=74°,BP、CP分别平分∠ABC和∠ACB,则∠BPC=()A.102°B.112°C.115°D.118°【分析】先根据三角形内角和定理,求得∠ACB度数,再根据角平分线的定义,得出∠PBC=37°,∠PCB=25°,最后根据三角形内角和定理,求得∠P的度数.【解答】解:∵在△ABC中,∠BAC=56°,∠ABC=74°,∴∠ACB=180°﹣∠BAC﹣∠ABC=50°,∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=37°,∠PCB=25°,∴△BCP中,∠P=180°﹣∠PBC﹣∠PCB=118°,故选:D.【点评】本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和等于180°.第10页(共17页)18.(2017•顺义区二模)如图,△ABC中,∠A=60°,BD,CD分别是∠ABC,∠ACB的平分线,则∠BDC的度数是()A.100°B.110°C.120°D.130°【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的性质求出∠DBC+∠DCB的度数,进而可得出结论.【解答】解:∵△ABC中,∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°.∵BD,CD分别是∠ABC,∠ACB的平分线,∴∠DBC+∠DCB=(∠ABC+∠ACB)=×120°=60°,∴∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣60°=120°.故选C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.19.(2017春•路北区期末)如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【分析】利用“设k法”求出最大角的度数,然后作出判断即可.【解答】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.第11页(共17页)【点评】本题考查了三角形的内角和定理,利用“设k法”表示出三个内角求解更加简便.二.填空题(共6小题)20.(2017•株洲)如图
本文标题:三角形的概念与内角和
链接地址:https://www.777doc.com/doc-5050515 .html