您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2014年高考真题――数学(江苏卷)含答案
绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:clS圆柱侧,其中c是圆柱底面的周长,l为母线长.圆柱的体积公式:ShV圆柱,其中S是圆柱的底面积,h为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合A={4,3,1,2},}3,2,1{B,则BA▲.2.已知复数2)i25(z(i为虚数单位),则z的实部为▲.3.右图是一个算法流程图,则输出的n的值是▲.4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5.已知函数xycos与)2sin(xy(0≤),它们的图象有一个横坐标为3的交点,则的值是▲.6.设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7.在各项均为正数的等比数列}{na开始0n1nn202n输出n结束(第3题)NY组距频率10080901101201300.0100.0150.0200.0250.030底部周长/cm(第6题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分。考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。中,,12a4682aaa,则6a的值是▲.8.设甲、乙两个圆柱的底面分别为1S,2S,体积分别为1V,2V,若它们的侧面积相等,且4921SS,则21VV的值是▲.9.在平面直角坐标系xOy中,直线032yx被圆4)1()2(22yx截得的弦长为▲.10.已知函数,1)(2mxxxf若对于任意]1,[mmx,都有0)(xf成立,则实数m的取值范围是▲.11.在平面直角坐标系xOy中,若曲线xbaxy2(a,b为常数)过点)5,2(P,且该曲线在点P处的切线与直线0327yx平行,则ba的值是▲.12.如图,在平行四边形ABCD中,已知8AB,5AD,PDCP3,2BPAP,则ADAB的值是▲.13.已知)(xf是定义在R上且周期为3的函数,当)3,0[x时,|212|)(2xxxf.若函数axfy)(在区间]4,3[上有10个零点(互不相同),则实数a的取值范围是▲.14.若△ABC的内角满足CBAsin2sin2sin,则Ccos的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)已知),2(,55sin.(1)求)4sin(的值;(2)求)265cos(的值.16.(本小题满分14分)如图,在三棱锥ABCP中,D,E,F分别为棱ABACPC,,的中点.已知ACPA,,6PA.5,8DFBC求证:(1)直线//PA平面DEF;ABDCP(第12题)(第16题)PDCEFBA(2)平面BDE平面ABC.17.(本小题满分14分)如图,在平面直角坐标系xOy中,21,FF分别是椭圆)0(12322babyax的左、右焦点,顶点B的坐标为),0(b,连结2BF并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结CF1.(1)若点C的坐标为)31,34(,且22BF,求椭圆的方程;(2)若,1ABCF求椭圆离心率e的值.18.(本小题满分16分)如图,为了保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆.且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),34tanBCO.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?19.(本小题满分16分)170m60m东北OABMC(第18题)F1F2OxyBCA(第17题)已知函数xxxfee)(,其中e是自然对数的底数.(1)证明:)(xf是R上的偶函数;(2)若关于x的不等式)(xmf≤1emx在),0(上恒成立,求实数m的取值范围;(3)已知正数a满足:存在),1[0x,使得)3()(0300xxaxf成立.试比较1ea与1ea的大小,并证明你的结论.20.(本小题满分16分)设数列}{na的前n项和为nS.若对任意正整数n,总存在正整数m,使得mnaS,则称}{na是“H数列”.(1)若数列}{na的前n项和nnS2(nN),证明:}{na是“H数列”;(2)设}{na是等差数列,其首项11a,公差0d.若}{na是“H数列”,求d的值;(3)证明:对任意的等差数列}{na,总存在两个“H数列”}{nb和}{nc,使得nnncba(nN)成立.数学Ⅱ(附加题)21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点.证明:OCB=D.B.[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1211,1x2-1AB,向量2ay,x,y为实数.若Aa=Ba,求x+y的值.C.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,已知直线l的参数方程为212222xtyt(t为参数),直线l与抛物线24yx相交于A,B两点,求线段AB的长.D.[选修4-5:不等式选讲](本小题满分10分)已知x0,y0,证明:22(1)(1)9xyxyxy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同.(l)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123,,xxx,随机变量X表示123,,xxx中的最大数,求X的概率分布和数学期望E(X).23.(本小题满分10分)已知函数0sin()(0)xfxxx,设()nfx为1()nfx的导数,nN.(1)求122222ff的值;(2)证明:对任意的nN,等式124442nnnff都成立.
本文标题:2014年高考真题――数学(江苏卷)含答案
链接地址:https://www.777doc.com/doc-5089562 .html