您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版-八年级数学下册-特殊的平行四边形--矩形、菱形-同步练习
矩形、菱形复习测试题一.选择题(共10小题)1.下列性质中,菱形对角线不具有的是()A.对角线互相垂直B.对角线所在直线是对称轴C.对角线相等D.对角线互相平分2.如图,△ABC中,CD⊥AB于D,且E是AC的中点.若AD=6,DE=5,则CD的长等于()A.5B.6C.7D.8(2)(3)(4)(6)3.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC4.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直的平分四边形是菱形5.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4B.8C.10D.127.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量其中三个角是否都为直角8.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当OA=OB时,四边形ABCD是矩形D.当∠ABD=∠CBD时,四边形ABCD是矩形9.下列四边形:①正方形、②矩形、③菱形,对角线一定相等的是()A.①②③B.①②C.①③D.②③10.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①②B.①③C.②③D.②④(10)(11)(13)二.填空题(共5小题)11.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于.12.一个菱形的周长为52cm,一条对角线长为10cm,则其面积为cm2.13.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则长方形纸条的宽度是cm.14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=cm.(14题图)(15题图)15.如图,为了检查平行四边形书架ABCD的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线AC,BD的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理.三.解答题(共8小题)16.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.17.如图,两条宽度都是3cm的纸条交错地叠在一起,相交成∠α=60°.(1)试判断重叠部分的四边形的形状;(2)求重叠部分的面积.18.如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.19.如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.(1)如图①:求证∠AFD=∠EBC;(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)20.如图,在矩形ABCD中,E,F分别为AD,BC的中点,连结AF,DF,BE,CE,AF与BE交于G,DF与CE交于H.求证:四边形EGFH为菱形.21.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.22.如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.23.如图,▱ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.矩形、菱形复习测试题参考答案与试题解析一.选择题(共10小题)1.C.2.D.3.C.4.B.5.B.6.B.7.D.8.D.9.B.10.C.二.填空题(共5小题)11.30°.12.12013.214.2.515.对角线相等的平行四边形是矩形,矩形的四个角都是直角.三.解答题(共8小题)16.解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.17.(1)解:重叠部分的四边形是菱形.理由如下:∵两纸条对边平行,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∴∠B=∠D,过点A作AE⊥BC于E,作AF⊥CD于F,则AE=AF=3,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS),∴AB=AD,∴▱ABCD是菱形,即:重叠部分的四边形是菱形;(2)解:如图,∠ADF=60°,∠DAF=30°,∴AD=2DF,由勾股定理得DF=3,∵重叠部分的四边形是菱形,∴重叠部分的面积=32×3÷2=33.18.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BEC与△DFA中,,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图:∵AB⊥AC,AB=4,BC=2,∴AC=6,∴AO=3,∴Rt△BAO中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.19.(1)证明:∵四边形ABCD为菱形,∴DC=CB,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠EDC=∠EBC,∵DC∥AB,∴∠EDC=∠AFD,∴∠AFD=∠EBC;(2)解:∵DE=EC,∴∠EDC=∠ECD,设∠EDC=∠ECD=∠CBE=x°,则∠CBF=2x°,由BE⊥AF得:2x+x=90°,解得:x=30°,∴∠DAB=∠CBF=60°;(3)分两种情况:①如图1,当F在AB延长线上时,∵∠EBF为钝角,∴只能是BE=BF,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°;②如图2,当F在线段AB上时,∵∠EFB为钝角,∴只能是FE=FB,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE,得x+2x=90,解得:x=30,∴∠EFB=120°,综上:∠EFB=30°或120°.20.证明:∵在矩形ABCD中AD=BC,且E、F分别是AD、BC的中点,∴AE=DE=BF=CF又∵AD∥BC,∴四边形AECF、BEDF是平行四边形.∴GF∥EH、EG∥FH.∴四边形EGFH是平行四边形.在△AEG和△FBG中,,∴△AEG≌△FBG(AAS)∴EG=GB,AG=GF,在△ABE和△BAF中∵,∴△ABE≌△BAF(SAS),∴AF=BE,∵EG=GB=BE,AG=GF=AF,∴EG=GF,∴四边形EGFH是菱形.21.解:(1)由作图知:PQ为线段AC的垂直平分线,∴AE=CE,AD=CD,∵CF∥AB∴∠EAC=∠FCA,∠CFD=∠AED,在△AED与△CFD中,,∴△AED≌△CFD;(2)∵△AED≌△CFD,∴AE=CF,∵EF为线段AC的垂直平分线,∴EC=EA,FC=FA,∴EC=EA=FC=FA,∴四边形AECF为菱形.22.证明:∵∠ACB=90°,AE平分∠BAC,EH⊥AB,∴CE=EH,在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,由勾股定理得:AC=AH,∵AE平分∠CAB,∴∠CAF=∠HAF,在△CAF和△HAF中∴△CAF≌△HAF(SAS),∴∠ACD=∠AHF,∵CD⊥AB,∠ACB=90°,∴∠CDA=∠ACB=90°,∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,∴∠ACD=∠B=∠AHF,∴FH∥CE,∵CD⊥AB,EH⊥AB,∴CF∥EH,∴四边形CFHE是平行四边形,∵CE=EH,∴四边形CFHE是菱形.23.(1)证明:∵四边形ABCD是平行四边形,∴AO=OC,AB∥CD.∴∠E=∠F.∵在△AOE与△COF中,,∴△AOE≌△COF(AAS);(2)连接EC、AF,则EF与AC满足EF=AC时,四边形AECF是矩形,理由如下:由(1)可知△AOE≌△COF,∴OE=OF,∵AO=CO,∴四边形AECF是平行四边形,∵EF=AC,∴四边形AECF是矩形.
本文标题:人教版-八年级数学下册-特殊的平行四边形--矩形、菱形-同步练习
链接地址:https://www.777doc.com/doc-5093675 .html