您好,欢迎访问三七文档
变压器油流静电油在变压器中强迫流动时,由于固体绝缘表面形成的极性分离,油带走了大量带正电的氢离子,而固体绝缘上因留下过多的电子使其带负电。变压器运行中铁心和外壳接地,靠近这一部位的油中正电荷可从铁心和外壳泄漏到地;不断留在绕组绝缘上的负电荷,则可通过绕组导体泄漏。没有泄漏的正负电荷,部分在流动过程中被中和,有一部分可能形成积聚的空间电荷。由于电荷的产生速率和泄漏不同,有些变压器可能不易形成空间电荷,而有的变压器的空间电荷在不断地形成和消失。空间电荷的消失过程又分两种情况:一种是空间电荷使该处直流电位提高,促使泄漏电流增加,在动态下形成稍有波动的泄漏电流源;另一种是空间电荷电位迅速升高使该处局部场强超过介质的耐受强度,致使发生放电,形成脉冲电流。由此说明,绕组中性点和铁心对地泄漏电流静电电压可在一定程度上反映变压器油流带电情况。油流静电放电特性如前所述,如果产生的电荷与泄漏、中和的电荷达到基本平衡时,积聚的空间电荷产生的局部静电场叠加上交流电场分量还没有超过该处介质的耐受强度,就不会引起放电,正如大多数的强油循环变压器尚未出现油流带电引发的静电放电现象一样;反之,若局部场强超过该处介质的耐受强度,则会发生放电。变压器内因上述油流带电过程产生的静电放电且有不同一般交流电压下局部放电的特点。它有两种放电形式,一种是在变压器内某些空间电荷积聚处外施交流电压形民的交流电场很弱,此处放电因完全取决于空间电荷产生的静电电位和介质耐受强度,而且有直流电压下放电的特点。这种放电重复率低,从开始放电到引发事故的时间较长。一般可通过对变压器油中气体分析,发现乙炔等含量增加。另一种情况是,空间电荷积聚处工作场强较高,交直流电场的叠加作用,因直流分量降低了放电起始电压,使静电放电能引发工频电场下的连续放电,放电重复率高,且有交流放电的特点。该放电从起始到引发事故所需时间较短,往往是还未来得及从色谱分析发现明显的放电迹旬,很快就发生了甚为严重的事故。由此,可以看到上述两种放电对变压器构成的威胁是不同的。实际情况中,上述两种放电形式并不是绝对的,可能同时存在于同一台变压器中。尽管影响变压器油流带电及静电放电的因素是复杂的,作用方式也是多咱多样的,但油流带电基本过程以及静电放电形成原因都是相似的。人们提出了针对油流静电的试验方法。当变压器内的油流带电过程尚未发展为静电放电时,为了了解变压器内静电积聚程度以及评估由此造成的潜在危险,一般在变压器不充电情况下开启油泵,测量绕组中性点和铁心对地的泄漏电流或静电电压作为油流静电试验中的测量参数之一。试验中究竟是采用只测泄漏电流或静电电压还是二者同时都测的方法更且有代表性,还需积累经验。此外,由于绝缘上静电荷的积聚是逐步建立起来的,观测其积聚程度的较终稳定状态需要一定时间。所以为提高测量结果的可靠性,试验中泄漏电流的监测时间应在4小时以上。如果当变压器油流带电过程已发展成静电放电,或相继出现静电放电过程时,由于放电过程使正负空间电荷中和,减少了静电荷聚集量,反而降低了泄漏电流值或静电电压值。此时单凭泄漏电流值或静电电压值就不能真实了解变压器的带电情况。因此,在油流静电试验中,还应进行局部放电测量。通常测量交流电压作用下的局部放电,因大多数故障情况下,局部放电总在电压较高处发生,所以变压器试验标准规定,一律用端子上的校准值作为视在放电量,即把所有不同部位放电的作用都折合为端子上的电荷变化量。而测量变压器内油流带电引起的静电放电则与此不同,正如前面所分析的,静电放电的形式,部位,形成原因等都且有一定随机性,虽可采用通常的局部放电测试回路作测量,但无法对放电量进行校准。直流静电放电为单个放电脉冲,放电能量较大,因此使用目前的局部放电测量仪,其灵敏度是足够的,可以通过观测放电脉冲幅值和次数对静电放电作定性判断。测试时,一般以电气和超声测量配合使用。为区分干扰,超声信号也可由套管末屏抽取的电信号触发。但设想发生静电放电部位台在远离绕组处,则电信号可能很弱,若触发门坎过高,放电信号就不能测到,总之,静电放电的且体测试方法还有待研究和改进。例1:1994年1月17日,对邹县电厂500kV联变C相进行油色谱分析,乙炔为1.2μl/l,跟踪至9月10日增至15.9μl/l,增长速度比较快,用改良三比值法判断为火花放电。进行了超声探测,在变压器有载发接开关侧收到了比较强烈的局部放电超声信号,并且在测试中听到变压器内部有放电声。放油进人检查,没有发现放电的痕迹,内部比较干净。该变压器投运后,乙炔有缓慢上升的趋势,乙含量达22μl/l。现场工作人员巡视时听到变压器内产生放电声,大约每分钟一次。在开两台油泵的情况下,经过1.5小时后,500kV线端直流静电达到13.5kV,35kV线端达到2kV.变压器内部有放电声,并且随着试验时间的延长,静电电压有继续升高的趋势。但当停一台油泵后,油流静电电压很快下降。放油进人检查,在变压器220kV及35kV套管下部的引线绝缘支架,磁屏蔽及围屏上发现放电点。上述部位上附着有大量的发黑的棉絮状物质,油箱底部的残油中也含有一些这样的物质和油漆片,经观察分析认为,这些棉絮状物质是绝缘纸板碎片在油中长期浸泡形成的。为了对比,对联变B相也进行了油流带电试验。在开两台油泵的情况下,经过一个半小时,500kV线端直流静电电压达到2050V,35kV线端达300V。变压器内部无放电声,并且随着试验时间的延长,静电电压稳定,无增长趋势。例2:1996年8月5日,工作人员在巡视时听到临沂局相公站1号主变内部有放电声音。当即取油样进行色谱分析,发现油中乙炔含量高,但总烃含量不高。8月6日对变压器内部放电原因进行了检查分析发现,在带负荷或不带负荷的情况下,开任意两台油泵运行,变压器内部放电消失;开任意3台或4台油泵,变压器内部有放电声,确认变压器内部的放电属油流静电带电。为确定放电部位,我们对该变压器进行了超声测试,当时变压器只开了两台泵,持续近一小时。既听不到放电声,仪器也未收到任何信号。再启动两台泵,不到1分钟,就听到变压器内部有清晰的放电声,仪器也收到了明显的超声信号。放电部位经过测量计算定在高压侧B相套管下部分接引线附近。8月20日,我们再次进行了测试,开3台,4台直至5台泵,这次是既听不到声音,又测不到信号。上次测试时变压器油温在40度以上,而这次由于天下着小雨,油温只有30度。在其它条件未变的情况下,温度降低破坏了油流带电的成因。第二天,经现场吊罩检查,未发现明显的放电痕迹,但发现有大量的红色漆皮附在绕组等处。取该变压器的油进行介质损耗试验,发现严重超标。将变压器油经过滤处理合格后注入变压器,投运后运行正常。
本文标题:变压器油流静电
链接地址:https://www.777doc.com/doc-5108498 .html