您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 园林工程 > 语文版中职数学拓展模块2.2《双曲线的标准方程和性质》2
2.2.2双曲线简单的几何性质(一)222bac定义图象方程焦点a.b.c的关系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222byax12222bxayyxoF2F1MxyF2F1M2、对称性一、研究双曲线的简单几何性质)0,0(12222babyax1、范围axaxaxax,,12222即关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)课堂新授3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点xyo-b1B2Bb1A2A-aa12(,0)(,0)AaAa顶点是、只有两个!如图,线段叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长2A1A2B1B(2)实轴与虚轴等长的双曲线叫等轴双曲线(3))0(22mmyxM(x,y)4、渐近线1A2A1B2BN(x,y’)Q:的位置关系它与xaby:的位置的变化趋势它与xaby的下方在xaby慢慢靠近xyoxabyxabyab)0(22xaxaby分的方程为双曲线在第一象限内部xabybabyax的渐近线为双曲线)0,0(12222(1)的渐近线为等轴双曲线)0(22mmyx(2)xy利用渐近线可以较准确的画出双曲线的草图(3)5、离心率双曲线的叫做的比双曲线的焦距与实轴长,ace离心率。ca0e1e是表示双曲线开口大小的一个量,e越大开口越大(1)定义:(2)e的范围:(3)e的含义:11)(2222eacaacab也增大增大且时,当abeabe,),,0(),1(的夹角增大增大时,渐近线与实轴eace222bac二四个参数中,知二可求、、、在ecba(4)等轴双曲线的离心率e=?2(5)的双曲线是等轴双曲线离心率2exyo的简单几何性质二、导出双曲线)0,0(12222babxay-aab-b(1)范围:ayay,(2)对称性:关于x轴、y轴、原点都对称(3)顶点:(0,-a)、(0,a)(4)渐近线:xbay(5)离心率:ace小结ax或axayay或)0,(a),0(axabyxbayace)(222bac其中关于坐标轴和原点都对称性质双曲线)0,0(12222babyax)0,0(12222babxay范围对称性顶点渐近线离心率图象例1:求双曲线的实半轴长,虚半轴长,焦点坐标,离心率.渐近线方程。解:把方程化为标准方程可得:实半轴长a=4虚半轴长b=3半焦距c=焦点坐标是(0,-5),(0,5)离心率:渐近线方程:14416922xy1342222xy5342245acexy34例题讲解12222byax的方程为解:依题意可设双曲线8162aa,即10,45cace又3681022222acb1366422yx双曲线的方程为xy43渐近线方程为)0,10(),0,10(21FF焦点.4516线和焦点坐标程,并且求出它的渐近出双曲线的方轴上,中心在原点,写焦点在,,离心率离是已知双曲线顶点间的距xe例2:1、若双曲线的渐近线方程为则双曲线的离心率为。2、若双曲线的离心率为2,则两条渐近线的夹角为。4,3yx课堂练习⑴与双曲线221916xy有共同渐近线,且过点(3,23);⑵与双曲线221164xy有公共焦点,且过点(32,2)例3:求下列双曲线的标准方程:例题讲解⑴法一:直接设标准方程,运用待定系数法考虑.(一般要分类讨论)解:双曲线221916xy的渐近线为43yx,令x=-3,y=±4,因234,故点(3,23)在射线43yx(x≤0)及x轴负半轴之间,∴双曲线焦点在x轴上,∴设双曲线方程为22221xyab(a0,b0),∴222243(3)(23)1baab解之得22944ab,∴双曲线方程为221944xy⑴与双曲线221916xy有共同渐近线,且过点(3,23);法二:巧设方程,运用待定系数法.⑴设双曲线方程为,22(0)916xy22(3)(23)91614221944双曲线的方程为xy法一:直接设标准方程,运用待定系数法⑵解:设双曲线方程为22221xyab(a0,b0)则22222220(32)21abab解之得22128ab∴双曲线方程为221128xy根据下列条件,求双曲线方程:⑵与双曲线221164xy有公共焦点,且过点(32,2).法二:设双曲线方程为221164xykk16040kk且221128xy∴双曲线方程为22(32)21164kk∴,解之得k=4,222221,2012(30)xymmm或设求得舍去1、“共渐近线”的双曲线的应用222222221(0)xyabxyab与共渐近线的双曲线系方程为,为参数,λ0表示焦点在x轴上的双曲线;λ0表示焦点在y轴上的双曲线。2222222222222211,1.xyxyabmmcxymcm2、与共焦点的椭圆系方程是双曲线系方程是总结:221492454xye巩固练习:1、求与椭圆有公共焦点,且离心率的双曲线方程。.1916,91625,4455,1505.5,252449222222222yxbaaayaxcc可得求得然后由设共焦点的双曲线为),,焦点为(得解:由1,1122222222222222mcymxcmymxbyax双曲线系方程是共焦点的椭圆系方程是注:与2、求与椭圆xy221681有共同焦点,渐近线方程为xy30的双曲线方程。解:椭圆的焦点在x轴上,且坐标为),(,,022)022(21FF双曲线的焦点在轴上,且xc22双曲线的渐近线方程为xy33bacabab33822222,而,解出2622ba,双曲线方程为xy2262112byax222(a>b>0)12222byax(a>0b>0)222ba(a>0b>0)c222ba(a>b>0)c椭圆双曲线方程abc关系图象yXF10F2MXY0F1F2p小结关于x轴、y轴、原点对称图形方程范围对称性顶点离心率1(0)xyabab2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)100yx(a,b)ab2222≥≤yayaxR,或关于x轴、y轴、原点对称(1)ceea渐近线ayxb..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)≥≤xaxayR,或(1)ceeabyxa课外思考:1.双曲线2211625xy的两条渐近线的夹角的正切值是________.2.若过双曲线2213yx的右焦点2F作直线与双曲线的两支都相交,求直线l的倾斜角的范围________.4090,60(120,180)备选练习:2.求中心在原点,对称轴为坐标轴,经过点P(1,-3)且离心率为的双曲线标准方程.21.过点(1,2),且渐近线为34yx的双曲线方程是________.2216955yx22188yx2.3.2双曲线简单的几何性质(二)关于x轴、y轴、原点对称图形方程范围对称性顶点离心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1babyax2222bybaxaA1(-a,0),A2(a,0)B1(0,-b),B2(0,b))10(eaceF1(-c,0)F2(c,0)F1(-c,0)F2(c,0)),b(abyax0012222Ryaxax,或关于x轴、y轴、原点对称A1(-a,0),A2(a,0))1(eace渐进线无xaby关于x轴、y轴、原点对称图形方程范围对称性顶点离心率)0(1babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay0012222Rxayay,或关于x轴、y轴、原点对称)1(eace渐进线xbay..yB2A1A2B1xOF2F1xB1yO.F2F1B2A1A2.F1(-c,0)F2(c,0)F2(0,c)F1(0,-c)Ryaxax,或)1(eacexaby1、“共渐近线”的双曲线222222221(0)xyxyabab与共渐近线的双曲线系方程为,为参数,λ0表示焦点在x轴上的双曲线;λ0表示焦点在y轴上的双曲线。2、“共焦点”的双曲线(1)与椭圆有共同焦点的双曲线方程表示为22221(0)xyabab2222221().xybaab(2)与双曲线有共同焦点的双曲线方程表示为22221(0,0)xyabab2222221()xybaab2211492454xye、求与椭圆有公共焦点,且离心率的双曲线方程。复习练习:2.求与椭圆xy221681有共同焦点,渐近线方程为xy30的双曲线方程。3、求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程。22185xy例1、双曲线型自然通风塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为12m,上口半径为13m,下口半径为25m,高55m.选择适当的坐标系,求出此双曲线的方程(精确到1m).A′A0xC′CB′By131225例题讲解例2、点M(x,y)与定点F(5,0),的距离和它到定直线:的距离的比是常数,求点M的轨迹.l165x54y0ldxyOlF引例:点M(x,y)与定点F(c,0)的距离和它到定直线的距离比是常数(ca0),求点M的轨迹.cx2aacM解:设点M(x,y)到l的距离为d,则||MFcda即222()xcycaaxc化简得(c2-a2)x2-a2y2=a2(c2-a2)设c2-a2=b2,22221xyab(a0,b0)故点M的轨迹为实轴、虚轴长分别为2a、2b的双曲线.222()||axcyacx22224222(2)2axcxcyaacxcxb2x2-a2y2=a2b2即就可化为:M点M的轨迹也包括双曲线的左支.一、第二定义双曲线的第二定义平面内,若定点F不在定直线l上,则到定点F的距离与到定直线l的距离比为常数e(e1)的点的轨迹是双曲线。定点F是双曲线的焦点,定直线叫做双曲线的准线,常数e是双曲线的离心率.对于双曲线22221xyab是相应于右焦点F(c,0)的右准线类似于椭圆2axc是相应于左焦点F′(-c,0)的左准线2axcxyoFlMF′2axcl′2axc点M到左焦点与左准线的距离之比也满足第二定义.想一想:中心在原点,焦点在y轴上的双曲线的准线方程是怎样的?xyoF相应于上焦点F(c,0)的是上准线2yac2yac相应于下焦点F′(-c,0)的是下准线2yac2yacF′(P60例6)如图,过双曲线的右焦点倾斜角为的直线交双曲线于A,B两点,求|AB|。22136xy2,F30分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.弦长问题例3、已知双曲线221,169xyF1、F2是它的左、右焦点
本文标题:语文版中职数学拓展模块2.2《双曲线的标准方程和性质》2
链接地址:https://www.777doc.com/doc-5110148 .html