您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 市场营销 > 厦门市2018届高三1月质量检查(数学理)(WORD版)
1厦门市2018届高中毕业班第一次质量检查理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将答题卡交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|10}Axxx,{|1}Bxyx,则ABA.{|0}xxB.{|1}xxC.{|01}xxD.R2.命题“32000,10xRxx”的否定是A.32000,10xxxRB.32000,10xxxRC.32,10xxxRD.32,10xxxR3.实数,xy满足0xy,则下列不等式成立的是A.11xyB.xyxyC.11()()22xyD.2xxy4.若mn,是两条不同的直线,,是两个不同的平面,则下列命题正确的是A.若,m,则m∥B.若m∥,nm,则nC.若m∥,n∥,m,n,则∥D.若m∥,m,n,则mn∥5.已知实数,xy满足1,20,21,xyxxy则目标函数2zxy的最大值等于A.7B.52C.2D.36.如图所示,函数3tan(2)6yx的部分图象与坐标轴分别交于点,,DEF,则DEF的面积等于A.π4B.π2C.πD.2π7.已知正方形ABCD的边长为2,对角线相交于点O,P是线段BC上一点,则OPCP的最小值为A.2B.12C.14D.28.函数2cos()([2,2])1xxfxxx的大致图象是yx2-2-1O1yx2-2-1O1AB2yx2-2-1O1yx2-2-1O1CD9.ABC中,23B,点,AB是双曲线E的左、右焦点,点C在E上,且()0BABCAC,则E的离心率为A.51B.31C.312D.31210.习总书记在十九大报告中指出:坚定文化自信,推动社会主义文化繁荣兴盛.如图1,“大衍数列”:0,2,4,8,12来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和.执行如图2所示的程序框图,输入10m,则输出的SA.100B.140C.190D.25011.若锐角满足2sincos2,则函数2()sin()fxx的单调递增区间为A.5ππ2π,2π1212kkkZB.5πππ,π1212kkkZC.π7π2π,2π1212kkkZD.π7ππ,π1212kkkZ12.函数22log,02,()log(4),24,xxfxxx若1()()2fafa,则a的取值范围是A.17(0,][2,)22B.177(0,][,)242C.1717(0,][2,)42D.17177(0,][,)442二、填空题:本题共4小题,每小题5分,共20分.13.复数z满足(1i)2iz,则z▲.14.设等比数列{}na满足11a,356aa,则579aaa▲.15.直线1ykx与抛物线24yx交于,AB两点.若163AB,则k▲.16.某三棱锥的三视图如图所示,则它的外接球表面积为▲.3三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)如图,单位圆O与,xy轴正半轴的交点分别为,AD,圆O上的点C在第一象限.(1)若点C的坐标为31(,)22,延长CD至点B,使得2DB,求OB的长;(2)圆O上的点E在第二象限,若2π3EOC,求四边形OCDE面积的最大值.18.(12分)如图,直角梯形BDFE中,EFBD∥,BEBD,22EF,等腰梯形ABCD中,ABCD∥,ACBD,24ABCD,且平面BDFE平面ABCD.(1)证明:AC平面BDFE;(2)若BF与面ABCD所成角为π4,求二面角BDFC的余弦值.DCABEF19.(12分)数列{}na满足122311111nnnaaaaaan.(1)若数列{}na为公差大于0的等差数列,求{}na的通项公式;(2)若1(1)nnnnbaa,求数列{}nb的前2n项和2nS.x第17题图BCDOyA420.(12分)已知点1(2,0)F,圆2F:22(2)16xy,点M是圆上一动点,1MF的垂直平分线与2MF交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点0,1P且斜率不为0的直线l与E交于,AB两点,点B关于y轴的对称点为B,证明直线AB过定点,并求PAB面积的最大值.21.(12分)已知函数2()()xfxaxxaeaR.(1)若0a,函数fx的极大值为3e,求实数a的值;(2)若对任意的0a,都有()ln(1)fxbx在[0,)上恒成立,求实数b的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy中,曲线C的参数方程为2cossinxy(为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,,AB为C上两点,且OAOB,设射线OA:02().(1)求曲线C的极坐标方程;(2)求OAOB的最小值.23.[选修4-5:不等式选讲](10分)函数()12fxxxa.(1)当1a时,求证:()13fxx;(2)若()fx的最小值为2,求实数a的值.5厦门市2018届高三年级第一学期期末质检理科数学试题参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分.1~5:BCBDC6~10:ACADC11~12:BD二、填空题:本大题共4小题,每小题5分,共20分.13.214.2815.316.1003三、解答题:本大题共6小题,共70分.17.本题考查三角函数定义、图形分析、余弦定理、图形的分割、三角恒等变换、辅助角公式、三角函数有界性等基础知识。本题考查学生三角函数概念的形成过程、图象分析能力、运算求解能力,其中渗透静止与运动观点、化归与转化、数形结合的思想。解:(1)由点C31(,)22在单位圆上,可知030AOC,···············································1分由图象可得0=60COD;···················································································2分在ODB中,1OD,0=120ODB,2DB;·························································3分由余弦定理得22202cos120OBODDBODDB;····································4分解得7OB;································································································5分(2)设=()62COD,2=3DOE··············································6分1sin2CODS,12sin()23EODS···································································7分四边形OCDE的面积S=EODS+112sinsin()()22362CODS·················8分131[sincossin]22233sincos443sin()26················································································10分62,2363;··················································11分当62,即3时,四边形OCDE的面积S的最大值为32.············12分(其他解法酌情给分)18.本题主要考查空间线线、线面、面面垂直的判定与性质,线面角的定义以及二面角的求法,考查空间想象能力、推理论证能力、运算求解能力.证明:(1)∵平面BDFE平面ABCD,BEBD,平面BDFE平面ABCDBD∴BE平面ABCD,·····················································································2分又AC平面ABCD,∴ACBE,································································3分又∵ACBD,且BEBDB,∴AC平面BDFE.·····················································································5分x第17题图BCDOyA6解:(2)法一:设ACBDO,∵四边形ABCD为等腰梯形,π2DOC,24ABCD,∴2ODOC,22OBOA,∵FEOB∥,∴四边形BOFE为平行四边形,∴OFBE∥,·······························································································6分又∵BE平面ABCD,∴OF平面ABCD.∴FBO为BF与平面ABCD所成的角,∴π=4FBO,·······························································································7分又∵π2FOB,∴22OFOB以O为原点,OA为x轴,OB为y轴,OF为z轴,建立空间直角坐标系,则(0,22,0)B,(0,2,0)D,(0,0,22)F,(2,0,0)C,(22,0,0)A(0,2,22)DF,(2,2,0)CD,···························································8分∵AC平面BDFE,∴平面BDF的法向量为(1,0,0),······································9分设平面DFC的一个法向量为(,,)xyzn=,由0,0,DFCDnn得2220,220,yzxy令2x得,(2,2,1)n=,··············································································10分22222cos,31221ACn.·········
本文标题:厦门市2018届高三1月质量检查(数学理)(WORD版)
链接地址:https://www.777doc.com/doc-5115712 .html