您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > DSP习题答案-3(2017)
1.求下列函数的LT(1))()1()(3tuetft解:a、根据定义式:)3(3311)()1()(3ssssdtetuesFstt),0(:b、直接利用常用变换对:)3(3311)(sssssF),0(:(2))(3)(2)(0ttttf解:a、根据定义式:32)](3)(2[)(00ststedtetttsF),(:b、常用变换对以及时移0()23stFse[]:(,)REs(3))(3)(2)(7tuettft解:a、根据定义式:7112732)](3)(2[)(7sssdtetuetsFstt),7(:b、利用常用变换对3211()277sFsss[]:(7,)REs(4))()('tttf解:a、根据冲激函数的微分性质:)()()(0'0'tfdttttf可以得到:1)()('dtettsFst),(:b、常用变换对因为()ts,而且()()tftFs所以()1Fs[]:(,)REs(5))2()1(2)()(tutututf解:a、定义式seedtetututusFssst221)]2()1(2)([)(),(:b、常用变换对2221211()(12)1(1)sssssFseeeesssses由于是时限信号,所以收敛区为:[]:(,)REs(6))]2()([)(tutuetft解:a、定义式11)]2()([)()1(2sedtetutuesFsstt),(:由罗必塔法则2111lim)1(2sess,所以-1不是极点b、利用频移性质,并根据时限信号的性质可以得到2(1)1()(1)1sFses[]:(,)REs(7))()()(3tuetutft解:a、定义式3113()[()()]3(3)tstFsuteutedtssss)0,3(:b、常用变换对令312()(),()()tftutfteut所以11()Fss[]:(,0)REs21()3Fss[]:(3,)REs3()(3)Fsss[]:(3,0)REs(8))()()(2tuetuetftt解:a、21()[()()](2)(1)ttstFseuteutedtss)1,2(:b、常用变换对令212()(),()()ttfteutfteut所以111()11Fsss[]:(,1)REs21()2Fss[]:(2,)REs1()(1)(2)Fsss[]:(2,1)REs2、计算图3-2所示信号的LT(1)1()(1)[()()]ftAtutut解法1:令1()[()()]ftAutut,则1()(1)sAFses,[]:(,)REs令2()[()()]Afttutut,则根据频域微分得到2211(){(1)}ssAFseess2(1)ssAAeess122()()()(1)sAAFsFsFsess[]:(,)REs解法2:将()ft进行微分分别得到()()[()()]AftAtutut()()[()()]AftAttt根据时域微分性质得到2()(1)sAsFsAse所以,2()(1)sAAFsess因为是时限信号,所以收敛区为[]:(,)REs(2)解:根据时域延时特性得到:2()[(1)]ssTAAFseess[]:(,)REs(3)解:令(1)题中信号为1()ft,则11()()2ftft21()2(2)sFsFse2222[(1)]24ssAAeess222222ssAAAeesss222(1)2ssAAeess[]:(,)REs(4)解:令(1)题中信号为1()ft,则11()()()ftftft11()()()ssFsFseFse22[(1)][(1)]ssssAAAAeeeessss22(12)ssAees22(1)sAes[]:(,)REs3、试计算图题3-3所示信号的LT1tf1(t)B-B20(1)解:因为,1()[()2(1)(2)]ftBututut2122111()[2][12](1)sssssFsBeesssBBeeess:(,)1tf2(t)B2B230(2)解:2()[()(1)(2)(3)]ftButututut231231111()[][1]ssssssFsBeeessssBeees:(,)1tf3(t)A-A20Asint(3)解:因为,根据图示得到3()sin[()(1)]ftAtutut1()(1)(1)sututes1sin()2jtjtteej根据复频域的频移性质得到()()3222211(){(1)(1)}2(1)(1)2,Re[]:(,)2sjsjssAFseejsjsjAeAejsjss1tf4(t)A-A20Asint(4)解:因为42()2()4222222()sin[()(2)]()[()(2)]211(){[(1)][(1)]}22()(1)(1),:(,)2jtjtsjsjssftAtututAeeututjAFseejsjsjAjAeejssτtf5(t)E0TT-τ(5)解:根据图示,对信号进行两次微分可得5()[()()()()]EfttttTtT其LT变换为:2()5()[1],:(,)ssTsTEsFseee所以,()52()[1],:(,)ssTsTEFseees4.求下列函数的反LT(1).12752)(2ssssF)0,3(:(2))2(62)(ssssF),0(:(3).212)(2ssssF),2(:(4)222)(2ssssF),1(:(5).2451)(sesFs),0(:(6)22)(1)(bassF),(:a(7).)52)(2()3(2)(22sssssF),1(:(8))2)(1(1)(23sssssF),1(:(9).)2)(1(1)(2sseesFss),1(:(10)1)1(2)(2)1(sesFs),1(:解:(1)3143)(sssF,由于极点-3,-4均在左极点,故反变换为因果信号43)(34stuet),4(:31)(3stuet),3(:)()(3)(34tuetuetftt(2)213)(sssF,由于极点-2,0均在左极点,故反变换为因果信号stu3)(3),0(:21)(2stuet),2(:)()(3)(2tuetutft(3)2111)(sssF,由于极点-1,2均在左极点,故反变换为因果信号11)(stuet),1(:21)(2stuet),2(:2()()()ttfteuteut(4)1)1(11)1(1)(22ssssF,利用常见的LT对,得到1)1(1)(cos2sstutet),1(:1)1(1)(sin2stutet),1(:)sin)(cos()(tttuetft(5)242551)(sessFs,由于极点0均在左极点,故反变换为因果信号251)(51stut),0(:245)4()4(51setuts),1(:4()()(4)55ttftutut(6)22)(1)(basbbsF,由常用的LT对,得到22)(1)()sin(1basbbtubtebat),(:a)()sin(1)(tubtebtfat(7)22222)1(2582)1(15421514)(sssssF,由常用的LT对,得到21514)(5142stuet),2(:222)1(154)()2cos(54sstutet),1(:222)1(258)()2sin(58stutet),1(:)()2sin(58)()2cos(54)(514)(2tutetutetuetfttt(8)31()221Fssss,由于极点-1,-2均在左极点,故反变换为因果信号11)(stuet),1(:233()2teuts),2(:2()2t),(:st)('),(:'2()()2()3()()ttfttteuteut(9)2111)2)(1(1)(sssssG,),1(:,则)()()(2tuetuetgtt由LT线性和时移性质得)2()()1()()()()()2(2)2()1(2)1(2tueetueetueetftttttt(10)12)(2sesGs,),0(:,由常用LT变换对11)(sin2stut),0(:由线性和时移性质得()2sin()sin(1)(1)gttuttut()(1)FsGs由LT复频移性质得()[2sin()sin(1)(1)]tftetuttut),1(:5、试用LT时域卷积定理计算()()atbteuteut解:令12()(),()()atbtfteutfteut则11()Fssa[]:(,)REsa21()Fssb[]:(,)REsb111()()()Fssasbsasb111[]basasbmax[]:[(,),]REsab所以:1()[]()atbtfteeutba6、若()()ftFs,(1)()(1)mbsFsss:(0,),且()10f,求bm?解:因为()Fs的收敛域是:(0,),是右半面,我们可以认为()ft是因果信号,同时,(1)()(1)mbssFss,收敛区域为:(1,),包含j轴,满足终值定理的条件,可以用单边LT变换性质0()lim()sfsFs。00(1)()lim()lim10(1)mmssbsfsFssbss所以,10mb7.已知系统传递函数5232)(2ssssH,计算输入x(t)=u(t)时,零状态响应初始值)0(xy和终值)(xy解:52321)()()(2sssssHsXsY,由单边LT变换的初值定理得05232lim)(lim)0(
本文标题:DSP习题答案-3(2017)
链接地址:https://www.777doc.com/doc-5125467 .html