您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 中考数学化简求值专项练习(较高难度)
1/4中考数学化简求值专项练习(较高难度)一.已知条件不化简,所给代数式化简例1.先化简,再求值:()aaaaaaaa221444222,其中a满足:aa2210例2.已知xy2222,,求()yxyyxxyxxyxyxyxy的值。例3.已知条件化简,所给代数式不化简例3.已知abc、、为实数,且abab13,bcbcacac1415,,试求代数式abcabbcac的值。2/4例4.已知条件和所给代数式都要化简例4.若xx13,则xxx2421的值是()A.18B.110C.12D.14例5.已知ab0,且满足aabbab2222,求abab3313的值。3/4中考数学化简求值专项练习解析卷一.已知条件不化简,所给代数式化简例1.先化简,再求值:()aaaaaaaa221444222,其中a满足:aa2210解:()aaaaaaaa221444222[()()][()()()]aaaaaaaaaaaaaaaa22124242124222224224122aaaaaaa()()122aa由已知aa2210可得aa221,把它代入原式:所以原式1212aa例2.已知xy2222,,求()yxyyxxyxxyxyxyxy的值。解:()yxyyxxyxxyxyxyxy()yxyxyxxyxyxyxyyxyxxyyxxyxyyxxy当xy2222,时原式222222222()()二.已知条件化简,所给代数式不化简例3.已知abc、、为实数,且abab13,bcbcacac1415,,试求代数式abcabbcac的值。解:由ababbcbcacac131415,,,可得:4/4113114115abbcac,,所以1116abc所以abbcacabc6所以abcabbcac16三.已知条件和所给代数式都要化简例4.若xx13,则xxx2421的值是()A.18B.110C.12D.14解:因为xx13所以()xx192所以xxxx222119所以xx2217所以xxxxx24222111118例5.已知ab0,且满足aabbab2222,求abab3313的值。解:因为aabbab2222所以()()abab220所以()()abab210所以ab2或ab1由ab0故有ab1所以abababaabbab33221313()()113312222()aabbabaabbab()()ababababababab22331133113311评注:本题应先对已知条件aabbab2222进行变换和因式分解,并由ab0确定出ab1,然后对所给代数式利用立方和公式化简,从而问题迎刃而解。
本文标题:中考数学化简求值专项练习(较高难度)
链接地址:https://www.777doc.com/doc-5127317 .html