您好,欢迎访问三七文档
数据库发展简史的数据模型数据库系统数据库术最初产生于20世纪60年代中期,到今天近几十年的历史,其发展速度之快,使用范围之广是其它技术所远不及的。技术核心基础发展格式化数据模型(包括层状数据模型和网状数据模型)关系数据模型面向对象的数据模型等非传统数据模型层状数据模型每个节点间是一对多的父子之间的联系,比如一个父亲三个儿子;中心下的几个部门,部门里的人。CEO开发部经理销售部经理员工甲员工乙员工丙结构清晰但如果CEO也是员工乙的直属上司,层状数据模型就难以描述这种情况了。网状数据模型中允许任意两个节点间有多种联系,层次模型实际上是网状模型的一个特例;如同学生选课,一个学生可以选修多门课程,某一课程也可被多名学生选修。工程制图小王数据库基础及应用小黑小白课程学生能描述大多数情况一旦增加一类数据,不仅变得结构复杂,而且可能导致重写数据库然而关系数据模型学生,比如我(学号,姓名,性别,所属学院,专业),我和小王,小白,小明等就组成了一张关系模型的数据表。1.再添加一类数据也不会造成较大改动;2.抽象级别高;3.整体也简单明了第一代数据库代表:1969年IBM公司研制的层次模型的数据库管理系统IMS和70年代美国数据库系统语言协商CODASYL下属数据库任务组DBTG提议的网状模型。层次数据库的数据模型是有根的定向有序树,网状模型对应的是有向图。这两种数据库奠定了现代数据库发展的基础。这两种数据库具有如下共同点1.支持三级模式(外模式、模式、内模式),模式之间具有转换(或成为映射)功能,保证了数据库系统具有数据与程序的物理独立性和一定的逻辑独立性;2.用存取路径来表示数据之间的联系;3.有独立的数据定义语言;4.导航式的数据操纵语言。网状数据库最早出现的是网状DBMS。网状模型中以记录为数据的存储单位。记录包含若干数据项。网状数据库的数据项可以是多值的和复合的数据。每个记录有一个惟一地标识它的内部标识符,称为码(DatabaseKey,DBK),它在一个记录存入数据库时由DBMS自动赋予。DBK可以看作记录的逻辑地址,可作记录的替身,或用于寻找记录。网状数据库是导航式(Navigation)数据库,用户在操作数据库时不但说明要做什么,还要说明怎么做。例如在查找语句中不但要说明查找的对象,而且要规定存取路径。世界上第一个网状数据库管理系统也是第一个DBMS是美国通用电气公司Bachman等人在1964年开发成功的IDS(IntegratedDataStore)。层次数据库现实世界中很多事物是按层次组织起来的。层次数据模型的提出,首先是为了模拟这种按层次组织起来的事物。层次数据库也是按记录来存取数据的。层次数据模型中最基本的数据关系是基本层次关系,它代表两个记录型之间一对多的关系。数据库中有且仅有一个记录型无双亲,称为根节点。其他记录型有且仅有一个双亲。在层次模型中从一个节点到其双亲的映射是惟一的,所以对每一个记录型(除根节点外)只需要指出它的双亲,就可以表示出层次模型的整体结构。层次模型是树状的。最著名最典型的层次数据库系统是IBM公司的IMS(InformationManagementSystem),这是IBM公司研制的最早的大型数据库系统程序产品。从60年代末产生起,如今已经发展到IMSV6,提供群集、N路数据共享、消息队列共享等先进特性的支持。这个具有30年历史的数据库产品在如今的应用连接、商务智能应用中扮演着新的角色。主要特征:支持关系数据模型(数据结构、关系操作、数据完整性)。关系模型具有以下特点:1.关系模型的概念单一,实体和实体之间的联系用关系来表2.以关系数学为基础;3.数据的物理存储和存取路径对用户不透明;4.关系数据库语言是非过程化的。第二代数据库关系模型的建立网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。用户在对这两种数据库进行存取时,仍然需要明确数据的存储结构,指出存取路径。关系数据库理论出现于60年代末到70年代初。1970年,IBM的研究员E.F.Codd博士发表《大型共享数据银行的关系模型》一文提出了关系模型的概念。后来Codd又陆续发表多篇文章,奠定了关系数据库的基础。关系模型有严格的数学基础,抽象级别比较高,而且简单清晰,便于理解和使用。但是当时也有人认为关系模型是理想化的数据模型,用来实现DBMS是不现实的,尤其担心关系数据库的性能难以接受,更有人视其为当时正在进行中的网状数据库规范化工作的严重威胁。为了促进对问题的理解,1974年ACM(AssociationforComputingMachinery,美国计算机学会)牵头组织了一次研讨会,会上开展了一场分别以Codd和Bachman为首的支持和反对关系数据库两派之间的辩论。这次著名的辩论推动了关系数据库的发展,使其最终成为现代数据库产品的主流。产生于80年代,随着科学技术的不断进步,各个行业领域对数据库技术提出了更多的需求,关系型数据库已经不能完全满足需求,于是产生了第三代数据库。主要有以下特征:1.支持数据管理、对象管理和知识管理;2.保持和继承了第二代数据库系统的技术;3.对其它系统开放,支持数据库语言标准,支持标准网络协议,有良好的可移植性、可连接性、可扩展性和互操作性等。第三代数据库支持多种数据模型(比如关系模型和面向对象的模型),并和诸多新技术相结合(比如分布处理技术、并行计算技术、人工智能技术、多媒体技术、模糊技术),广泛应用于多个领域(商业管理、GIS、计划统计等),由此也衍生出多种新的数据库技术。第三代数据库分布式数据库用计算机网络将物理上分散的多个数据库单元连接起来组成的一个逻辑上统一的数据库。每个被连接起来的数据库单元称为站点或结点。分布式数据库有一个统一的数据库管理系统来进行管理,称为分布式数据库管理系统。分布式数据库的基本特点包括:物理分布性、逻辑整体性和站点自治性。从这三个基本特点还可以导出的其它特点有:数据分布透明性、集中与自治相结合的控制机制、适当的数据冗余度和事务管理的分布性。一个大的部门可能会同时使用不同的DBMS,以支持各种不同特点和功能的应用系统。分布式数据库按照各站点中数据库管理系统的数据模型的异同分为异构型分布式数据库和同构型分布式数据库,按照控制系统的类型分为全局控制集中性、全局控制分散型和全局控制可变型。数据库技术New!!!多媒体数据库提供了一系列用来存储图像、音频和视频对象类型,更好地对多媒体数据进行存储、管理、查询。人们期望第三代数据库系统能够提供丰富又灵活的造模能力,扩充的系统功能,从而能针对不同应用领域的特点,利用通用的关系模块比较容易的构造出多种多样的特种数据库。数据库技术New!!!模糊数据库是存储、组织、管理和操纵模糊数据库的数据库,可以用于模糊知识处理。模糊的概念,比如一张白纸上的一片墨迹,由于墨水外渗,墨迹边缘不清楚,要判断边缘上的一些位置是否已被墨迹污染了,还是没有被污染都不能明确回答,只能用一些“肯否定不可能,极不可能,很小可能,较小可能,可能,较大可能,极大可能,肯定可能”等词语来描述该位置是否在该墨迹之中。并行数据库近年来,数据库系统的应用已经从商业数据处理迅速拓展到诸如超大型数据检索、数据仓库、联机数据分析、数据挖掘以及高吞吐量OLTP等许多应用领域。这些应用领域的特点是数据量大、复杂度高、用户数目多,对数据库系统的处理能力提出了非常高的要求,这些应用需求直接驱动了新一代高性能数据库系统----并行数据库系统的研制。并行数据库系统试图通过充分利用通用并行计算机的处理机、磁盘等硬件设备的并行数据处理能力来提高数据库系统的性能。END随着科学技术的发展,计算机技术不断应用到各行各业,数据库技术也被应用到特定的领域中,出现了数据仓库、工程数据库、统计数据库、空间数据库科学数据库等多种数据库,使数据库领域的应用范围不断扩大。这些数据库系统都明显的带有某一领域应用需求的特征。由于传统数据库系统的局限性,无法直接使用当前DBMS市场上销售的通用的DBMS来管理和处理这些领域内的数据对象。有人会问,不同的应用领域就要研制出不同的数据库系统吗?这实际上正是第三代数据库系统研究探索的问题,或者说是第三代数据库系统的数据模型即面向对象数据模型研究探索的问题。展望
本文标题:数据库技术发展简史
链接地址:https://www.777doc.com/doc-5138752 .html