您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020年山东省菏泽市东明县菜园集中学中考数学一模试卷
第1页(共16页)2020年山东省菏泽市东明县菜园集中学中考数学一模试卷一、选择题1.(3分)2cos30°的值等于()A.1B.√2C.2D.√32.(3分)下列几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个3.(3分)据国家卫健委报道,截止到2020年2月16日24时,全国31省和新疆建设兵团共报告新冠肺炎确诊病例28179人,将28179科学记数法表示为(精确到千位)()A.2.8×102B.2.8×103C.2.8×104D.2.0×1034.(3分)估计√8−1的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间5.(3分)将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形6.(3分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.7.(3分)为调查某校3000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A.2400名B.900名C.800名D.600名8.(3分)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=99.(3分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2B.2:3C.1:3D.1:410.(3分)下列各因式分解正确的是()第2页(共16页)A.x2+2x﹣1=(x﹣1)2B.﹣x2+(﹣2)2=(x﹣2)(x+2)C.x3﹣4x=x(x+2)(x﹣2)D.(x+1)2=x2+2x+111.(3分)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为()A.1B.√32C.√3D.2√312.(3分)如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点,连接MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是()A.一直增大B.一直减小C.先减小后增大D.先增大后减少二、填空题13.(3分)|−13|=.14.(3分)如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是.15.(3分)在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.16.(3分)在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.17.(3分)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位称为1次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是.18.(3分)如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为.第3页(共16页)三、解答题19.(1)计算:4cos45°−√8+(π−√3)0+(﹣1)3;(2)化简:(1−𝑛𝑛+𝑛)÷𝑛𝑛2−𝑛2.20.解不等式组:{1+𝑛2−𝑛−13≤13(𝑛−1)≤2𝑛+1.21.如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22.在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如图.(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动?23.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为6√3米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;第4页(共16页)(2)若⊙O的半径R=3,PA=9,求OM的长.25.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的23,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?26.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为(﹣1,0).如图所示,B点在抛物线y=12x2+12x﹣2图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为﹣3.(1)求证:△BDC≌△COA;(2)求BC所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.第5页(共16页)2020年山东省菏泽市东明县菜园集中学中考数学一模试卷参考答案与试题解析一、选择题1.(3分)2cos30°的值等于()A.1B.√2C.2D.√3【分析】根据特殊角三角函数值,可得答案.【解答】解:2cos30°=2×√32=√3,故选:D.【点评】本题考查了特殊角三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.2.(3分)下列几何图形中,一定是轴对称图形的有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念,分析各图形的特征求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.这条直线叫做对称轴.【解答】解:所有图形沿某条直线折叠后直线两旁的部分能够完全重合,那么一定是轴对称图形的有圆弧、角、扇形、菱形和等腰梯形共5个.故选:D.【点评】本题考查了轴对称的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.3.(3分)据国家卫健委报道,截止到2020年2月16日24时,全国31省和新疆建设兵团共报告新冠肺炎确诊病例28179人,将28179科学记数法表示为(精确到千位)()A.2.8×102B.2.8×103C.2.8×104D.2.0×103【分析】先利用科学记数法表示,然后把百位上的数字1进行四舍五入即可.【解答】解:28179≈2.8×104,故选:C.【点评】本题考查了近似数和科学记数法:经过四舍五入得到的数为近似数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)估计√8−1的值在()A.0到1之间B.1到2之间C.2到3之间D.3至4之间【分析】求出√8的范围,都减去1即可得出答案.【解答】解:∵2<√8<3,∴1<√8−1<2,即√8−1在1到2之间,故选:B.【点评】本题考查了估算无理数的大小的应用,关键是确定√8的范围.5.(3分)将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选:C.【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法,把一个图形绕着一个定点旋转一个角度后,与初始第6页(共16页)图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6.(3分)如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.7.(3分)为调查某校3000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱体育节目的学生共有()A.2400名B.900名C.800名D.600名【分析】根据扇形图可以得出该校喜爱体育节目的学生所占比例,进而得出该校喜爱体育节目的学生数目.【解答】解:根据扇形图可得:该校喜爱体育节目的学生所占比例为:1﹣5%﹣35%﹣30%﹣10%=20%,故该校喜爱体育节目的学生共有:3000×20%=600(名),故选:D.【点评】此题主要考查了扇形图的应用,根据该校喜爱体育节目的学生所占比例进而求出具体人数是解题关键.8.(3分)用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.9.(3分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2B.2:3C.1:3D.1:4【分析】在△ABC中,AD、BE是两条中线,可得DE是△ABC的中位线,即可证得△EDC∽△ABC,然后由相似三角形的面第7页(共16页)积比等于相似比的平方,即可求得答案.【解答】解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=12AB,∴△EDC∽△ABC,∴S△EDC:S△ABC=(𝑛𝑛𝑛𝑛)2=14.故选:D.【点评】此题考查了相似三角形的判定与性质与三角形中位线的性质.此题比较简单,注意中位线的性质的应用,注意掌握相似三角形的面积的比等于相似比的平方定理的应用是解此题的关键.10.(3分)下列各因式分解正确的是()A.x2+2x﹣1=(x﹣1)2B.﹣x2+(﹣2)2=(x﹣2)(x+2)C.x3﹣4x=x(x+2)(x﹣2)D.(x+1)2=x2+2x+1【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【解答】解:A、x2+2x﹣1无法因式分解,故A错误;B、﹣x2+(﹣2)2=(2+x)(2﹣x),故B错误;C、x3﹣4x=x(x+2)(x﹣2),故C正确;D、(x+1)2=x2+2x+1,是多项式的乘法,不是因式分解,故D错误.故选:C.【点评】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.11.(3分)如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部
本文标题:2020年山东省菏泽市东明县菜园集中学中考数学一模试卷
链接地址:https://www.777doc.com/doc-5176721 .html