您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 广东省深圳市南山区2014-2015学年高一下学期期末考试数学试卷-Word版含解析
2014-2015学年广东省深圳市南山区高一(下)期末数学试卷一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项最符合题目要求.1.求值sin210°=()A.B.﹣C.D.﹣2.已知角α的终边上一点P(1,),则sinα=()A.B.C.D.3.函数f(x)=x•sin(+x)是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数4.如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以α表示.已知甲、乙两个小组的数学成绩的平均分相同,则乙组数学成绩的中位数为()A.92B.93C.93.5D.945.已知向量=(4,2),=(x,3),若∥,则实数x的值为()A.3B.6C.D.6.如图所示的程序框图,若输出的S是62,则①可以为()A.n≤3?B.n≤4?C.n≤5?D.n≤6?7.已知向量=(1,1),=(2,﹣3),若k﹣2与垂直,则实数k的值为()A.﹣1B.1C.2D.﹣28.若,则tanα•tanβ=()A.B.C.D.9.设非零向量,,满足+=,且==,则向量与的夹角为()A.B.C.D.10.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a﹣b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.11.已知向量=(2,2),=(﹣3,4),则•=.12.已知sin(π+α)=,则cos2α=.13.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第8组抽出的号码应是.14.在区间[﹣1,1]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax﹣b2+1有零点的概率为.三、解答题:本大题共6小题,共80分,解答应写出文字说明或演算步骤.15.(12分)(2015春•深圳期末)已知tanα=2(1)求tan2α的值;(2)求sin2α+sinαcosα﹣2cos2α的值.16.(12分)(2015春•深圳期末)已知cos(α+)=,≤α<.(1)求sin(α+)的值;(2)求cos(2α+)的值.17.(14分)(2015春•深圳期末)某个体服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这件服装件数x之间的一组数据关系如表所示:x3456789y66697381899091已知:xi2=280,xiyi=3487,=,=﹣(Ⅰ)求,;(Ⅱ)若纯利y与每天销售件数x之间的回归直线方程;(Ⅲ)若该周内某天销售服装20件,估计可获纯利多少元?18.(14分)(2015春•深圳期末)已知函数f(x)=2sin(ωx+φ)(ω>0,0≤φ<2π)的部分图象如图所示.(Ⅰ)求f(x)的表达式;(Ⅱ)求函数f(x)的单调递减区间;(Ⅲ)若x∈[0,],求f(x)的值域.19.(14分)(2015春•抚顺期末)某工厂有25周岁以上(含25周岁)的工人300名,25周岁以下的工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,并将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2名,求至少抽到一名25周岁以下的工人的概率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“生产能手与工人的年龄有关”?附表及公示P(K2≥k)0.1000.0500.0100.001k2.7063.8416.63510.828K2=.20.(14分)(2015春•深圳期末)设向量=(a,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•cos∠AOB(Ⅰ)当y=f(x)的图象经过点(,2)时,求实数a的值;(Ⅱ)在(Ⅰ)的条件下,若x为锐角,当sin2x=sin(+α)•sin(﹣α)+时,求△OAB的面积;(Ⅲ)在(Ⅰ)的条件下,记函数h(x)=f(x+t)(其中实数t为常数,且0<t<π).若h(x)是偶函数,求t的值.2014-2015学年广东省深圳市南山区高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分.在每小题给出的四个选项中,只有一项最符合题目要求.1.求值sin210°=()A.B.﹣C.D.﹣考点:运用诱导公式化简求值.分析:通过诱导公式得sin210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.解答:解:∵sin210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D点评:本题主要考查三角函数中的诱导公式的应用.可以根据角的象限判断正负.2.已知角α的终边上一点P(1,),则sinα=()A.B.C.D.考点:任意角的三角函数的定义.专题:三角函数的求值.分析:根据三角函数的定义进行求解即可.解答:解:角α的终边上一点P(1,),则r=|0P|=2,则sinα=,故选:A点评:本题主要考查三角函数的定义,比较基础.3.函数f(x)=x•sin(+x)是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数考点:正弦函数的奇偶性;运用诱导公式化简求值.专题:函数的性质及应用;三角函数的图像与性质.分析:运用诱导公式化简解析式可得f(x)=﹣xcosx,由f(﹣x)=﹣(﹣x)cos(﹣x)=xcosx=﹣f(x),即可得函数f(x)=x•sin(+x)是奇函数.解答:解:∵f(x)=x•sin(+x)=﹣xcosx,又f(﹣x)=﹣(﹣x)cos(﹣x)=xcosx=﹣f(x),∴函数f(x)=x•sin(+x)是奇函数.故选:A.点评:本题主要考查了运用诱导公式化简求值,正弦函数的奇偶性等知识的应用,属于基本知识的考查.4.如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以α表示.已知甲、乙两个小组的数学成绩的平均分相同,则乙组数学成绩的中位数为()A.92B.93C.93.5D.94考点:众数、中位数、平均数.专题:计算题;概率与统计.分析:先根据甲、乙两组的平均分相同,求出α的值,再求乙组的中位数即可.解答:解:∵甲、乙两个小组的平均分相同,∴=α=2∴乙组数学成绩的中位数为=93.故选:B.点评:本题考查了求平均数与中位数的应用问题,是基础题目.5.已知向量=(4,2),=(x,3),若∥,则实数x的值为()A.3B.6C.D.考点:平行向量与共线向量.专题:平面向量及应用.分析:利用向量共线的充要条件,列出方程求解即可.解答:解:向量=(4,2),=(x,3),若∥,可得12=2x,解得x=6.故选:B.点评:本题考查向量共线定理的应用,基本知识的考查.6.如图所示的程序框图,若输出的S是62,则①可以为()A.n≤3?B.n≤4?C.n≤5?D.n≤6?考点:程序框图.专题:算法和程序框图.分析:根据程序框图进行模拟计算即可得到结论.解答:解:第一次,n=1,S=0,满足条件.S=0+21=2,n=2,第二次,n=2,S=2,满足条件.S=2+22=6,n=3,第三次,n=3,S=6,满足条件.S=6+23=14,n=4,第四次,n=4,S=14,满足条件.S=14+24=30,n=5,第五次,n=5,S=30,满足条件.S=30+25=62,n=6,第六次,n=6,S=62,不满足条件输出S=62,则①可以为n≤5?,故选:C点评:本题主要考查程序框图的识别和应用,根据条件进行模拟运算是解决本题的关键.7.已知向量=(1,1),=(2,﹣3),若k﹣2与垂直,则实数k的值为()A.﹣1B.1C.2D.﹣2考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:利用已知条件表示k﹣2,通过向量互相垂直⇔数量积为0,列出方程解得k.解答:解:∵向量=(1,1),=(2,﹣3),∴k﹣2=k(1,1)﹣2(2,﹣3)=(k﹣4,k+6).∵k﹣2与垂直,∴(k﹣2)•=k﹣4+k+6=0,解得k=﹣1.故选:A.点评:本题考查了向量的运算、向量垂直与数量积的关系,属于基础题.8.若,则tanα•tanβ=()A.B.C.D.考点:两角和与差的正弦函数;弦切互化.专题:计算题.分析:利用两角和与差的余弦公式,化简,求出sinαsinβ与cosαcosβ的关系,然后求出tanα•tanβ.解答:解:因为,所以;.故选D点评:本题考查两角和与差的余弦函数,弦切互化,考查计算能力,是基础题.9.设非零向量,,满足+=,且==,则向量与的夹角为()A.B.C.D.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:把已知式子平方由数量积的运算易得向量夹角的余弦值,可得夹角.解答:解:由题意可得=(+)2,∴||2=||2+||2+2||||cosθ,其中θ为向量与的夹角,∵==,∴cosθ=﹣,∴向量与的夹角为故选:D点评:本题考查平面向量的夹角,属基础题.10.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a﹣b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:新定义.分析:本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a﹣b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,其中满足|a﹣b|≤1的有如下情形:①若a=1,则b=1,2;②若a=2,则b=1,2,3;③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,总共16种,∴他们“心有灵犀”的概率为.故选D.点评:本题是古典概型问题,属于高考新增内容,解本题的关键是准确的分类,得到他们“心有灵犀”的各种情形.二、填空题:本大题共4小题,每小题5分,共20分.11.已知向量=(2,2),=(﹣3,4),则•=2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用平面向量的数量积的坐标表示解答.解答:解:由已知得到•=2×(﹣3)+2×4=﹣6+8=2;故答案为:2.点评:本题考查了平面向量的数量积的坐标运算;=(x,y),=(m,n),则•=xm+yn.12.已知sin(π+α)=,则cos2α=.考点:二倍角的余弦;运用诱导公式化简求值.专题:三角函数的求值.分析:由诱导公式可求sinα,利用二倍角的余弦函数公式即可求值.解答:解:∵sin(π+α)=﹣sinα=,∴sin,∴cos2α=1﹣2sin2α=1﹣2×=.故答案为:.点评:本题主要考查了诱导公式,二倍角的余弦函数公式的应用,属于基本知识的考查.13.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第8组抽出的号码应是37.考点:系统抽样方法.专题:应用题.分析:由分组可知,抽号的间隔为5,第5组抽
本文标题:广东省深圳市南山区2014-2015学年高一下学期期末考试数学试卷-Word版含解析
链接地址:https://www.777doc.com/doc-5196328 .html