您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > A Sieve Auxiliary Function
ASieveAuxiliaryFunctionDavidBradleyDedicatedtoProfessorHeiniHalberstam,ontheoccasionofhisretirement.Abstract.InthesievetheoriesofRosser-IwaniecandDiamond-Halberstam-Richert,theupperandlowerboundsievefunctions(Fandf,respectively)satisfyacoupledsystemofdi erential-di erenceequationswithretardedarguments.Toaidinthestudyofthesefunctions,Iwaniecintroducedaconjugatedi erence-di erentialequationwithanadvancedargument,andgaveasolution,q,whichisanalyticintherighthalf-plane.Theanalysisoftheboundingsievefunctions,Fandf,isfacilitatedbyanadjointintegralinner-productrelationwhichlinksthelocalbehaviourofF fwiththatofthesieveauxiliaryfunction,q.Inaddition,qplaysafundamentalroleindeterminingthesievinglimitofthecombinatorialsieve,andhenceindeter-miningtheboundaryconditionsofthesievefunctions,Fandf.Thesieveauxiliaryfunction,q,hasbeentabulatedpreviously,butthesedatawerenotsupportedbynumericalanalysis,duetotheprohibitivepresenceofhigh-orderpartialderivativesarisingfromthenumericalquadraturemethodsused[15,17].Inthispaper,wedevelopadditionalrepresentationsofq.Certainoftheserepresentationsareamenabletodetailederroranalysis.Weprovidethiserroranalysis,andasaconsequence,weindicatehowq-valuesguaranteedtoatleastsevendecimalplacescanbetabulated.1.IntroductionInhisseminalpaper,Rosser’sSieve[11],Iwaniecintroducedapairofdi erence-di erentialequationswhichhavebeenstudiedmorerecentlybyDiamond,Hal-berstam,andRichert[3{10],andbyWheeler[17,18].TheequationsappearasauxiliaryequationsinconnectionwiththeproblemofestimatingS(A;P;x):=#fa2A:gcd(a;Ypxp2Pp)=1g;wherePisasetofprimesandAisa nitesetofintegers.InthesievetheoriesofRosser-IwaniecandDiamond-Halberstam-Richert,theequationstaketheform(1.1)(uq (u))0= q (u)+ q (u+1)2DAVIDBRADLEYand(1.2)(up (u))0= p (u) p (u+1);whereu; arerealandpositive.Theparameter denotesthedimensionofthesieve,orsiftingdensity,andisameasureoftheaveragenumberofresidueclassesperprimeinthesequencebeingsifted.Iwaniecgavesolutionsto(1.1)and(1.2)involvingtheso-calledcomplementaryexponentialintegral[14,p.40]de nedbyEin(z):=Zz01 e ttdt:Thesolutionsare(1.3)q (u)= (2 )2 iZz 2 euze Ein( z)dzand(1.4)p (u)=Z10e xu Ein(x)dx;wherein(1.3),thecontourstartsat 1,huggingthenegativerealaxis,thencirclestheorigininthepositivedirectionbeforereturningto 1.Inthispaper,wefocusontheproblemspresentedbythefunctionq ,sincep ,beingtheLaplacetransformofapositivefunction,isrelativelysimpletodealwith.In[7],itisshownthatthesolutions(1.3),(1.4)areunique,subjecttomildpolynomial-likegrowthconditionsatin nity.InSection2below,weprovethat(1.3)istheuniquesolutioninaclassoffunctionsrepresentableasaLaplace/Mellintransform.InSection3,anasymptoticexpansionisderived,andafewpropertiesofthecoe cientsareproved.InSection4,wegivearepresentationofq intermsofanoperatorthatarisesinothercontexts.Finally,itisofsomeinteresttohavevaluesofq tabulated.WetakeupthisprobleminSection5.Weremarkthatthispaperisbasedinsigni cantpartontheauthor’sPh.D.thesis[2].2.TheFunctionq (u)Thedi erence-di erentialequation(1.1)canberewrittenintheform u1 q (u) 0= u q (u+1);sothatthevalueofthefunctionatuisgivenbyanintegralinvolvingthefunctionatlargervaluesoftheargument.SinceintegrationisasmoothingASIEVEAUXILIARYFUNCTION3operation,oneexpectsrepeatedintegrationstoyieldaC1solution,givenonlymildassumptionsonthebehaviourofthefunctionatin nity.Infact,itiseasytoseethatIwaniec’ssolution(1.3)isanalyticintherighthalf-planeandthatq (u)asgivenby(1.3)isasymptotictou2 1asutendstoin nity.In[7],thesolution(1.3)isshowntobeuniqueintheclassofnormalizedpolynomial-likefunctions.Inotherwords,(1.3)istheuniquesolutionto(1.1)whichsatis esq (u) ubasu!1,forsomeconstantb(andhencewemusthaveb=2 1).Inthesequel,weshallproveauniquenessresultofasomewhatdi erentkind,whichshowsthat(1.3)isuniqueinaclassoffunctionsrepresentableasaLaplace/Mellintransform.Forthistask,itispro tabletoviewq (s)asafunctionofthecomplexvariable ,withslyingintherighthalf-plane,althoughforsieveapplications,weareprimarilyconcernedwithpositiverealvaluesoftheparameters.But rst,weneedtorecast(1.3)asanintegraloverthepositiverealaxis.Proposition2.1.Letnbeanon-negativeinteger,andsuppose(n+1 2 )0.Then(2.1)q (s)=( 1)n (n+1 2 )Z10xn 2 @@x ne sxe Ein(x)dx;(s)0:Remark.If isrealandsmallenoughsothatn=0orn=1ispermissible(i.e. 1=2intheformercase, 1inthelatter)thenonecanusetherepresentation(2.1)tocomputeq (u)quiteeasily.However,asnincreases,thehigherorderpartialderivativesrapidlybecomecumbersome,andsoforlargervaluesof ,themethodofSection5ispreferrable.ProofSketch.Thecasen=0canbefoundinIwaniec[11,p.184].TeRiele[15,p.6]andWheeler[17,p.73]derive(2.1)fromthen=0casebyperformingrepeatedintegrationbypartsonthelatter.Onecanalsoobtain(2.1)directlyfrom(1.3),integratingbypartsntimes.Theintegratedtermsallvanishduetothepresenceofeszasafactorineveryderivativeofesze Ein( z).Onecanthencollapsethecontourontothenegativerealaxis,andaftersomeminorsimpli cations,(2.1)results.See[2,p.12]fordetails.Wearenowreadytoprovethat(2.1)istheuniquesolutionto(1.1)intheclassoffunctionsrepresentableasaLaplace/Mellin
本文标题:A Sieve Auxiliary Function
链接地址:https://www.777doc.com/doc-5197549 .html