您好,欢迎访问三七文档
我们开始讨论We'vebeguntoturnto柏拉图的对话录《斐多篇》了Plato'sdialoguePhaedo,上一节课我们简单的andwhatIstarteddoinglasttimewassketching讲了《斐多篇》形而上学的要点thebasicoutlinesofPlato'smetaphysics--没必要做太深入的研究notsomuchtogiveafullinvestigationofthat--这里我们也不需要那样做clearlywe'renotgoingtodothathere--只要对《斐多篇》中形而上学观点的butjusttoprovideenoughoftheessentialoutlines核心概述有足够的了解ofPlato'smetaphysicalviews我们就可以理解sothatwecanunderstandthearguments《斐多篇》后面的观点thatcomeuplaterinthePhaedo,基本上所有的或者说诸多的这些先决条件basicallyallofwhichormanyofwhichpresupposesomething--都是柏拉图形而上学观点的重要基石certaincentralaspectsaboutPlato'smetaphysicalviews.他的形而上学背后的关键点是Thekeypointbehindhismetaphysicsthenwasthethoughtthat,除了我们都熟悉的inadditiontotheordinaryempiricalphysicalworld现实世界thatwe'reallfamiliarwith,我们必须假定某种第二领域的存在wehavetoposittheexistenceofakindofsecondrealm,这存在于柏拉图的inwhichexistthePlatonic--那些如今被称作为asthey'renowadayscalled--柏拉图型相或柏拉图理念中thePlatonicformsorPlatonicideas.这类事物Thesortofthing我们可能需要称作或认为是抽象的现实thatperhapswemightcallorthinkofasabstractobjects或抽象的性质orabstractproperties.我们假定这些的原因是Andthereasonforpositingthesethingsis人人影视去思考这些理念thinkabouttheseideas,目前我们认识到在正常的现实世界中andyet,werecognizethattheordinaryphysicalworld--尽管很多东西或多或少的参与其中althoughthingsmayparticipateinthemtovaryingdegrees--我们并不会在现实世界中wedon'tactuallycomeacrosstheseobjects直接面对这些对象或者个体orentitiesinthephysicalworld.我们可以探讨Sothatwecantalkabout事物的不同程度的美丽thingsbeingbeautifultovaryingdegrees,但是我们从不在现实世界中butwenevercomeacross直接碰到美丽这个东西beautyitselfintheactualempiricalworld.我们可与去探讨Weareabletotalkabout二加一等于三的这个事实thefactthattwoplusoneequalsthree,但是我们不可能有一天真的碰到数字butit'snotasthoughweevercomeacrossnumbers--在现实世界中碰到个叫数字三的东西numberthreeitself--anywhereintheempiricalworld.更进一步使现实世界和这个所谓的Afurtherpointthatdistinguishestheempiricalworldfromthis--柏拉图的理念世界的区别thisrealmofPlatonicidealobjects--在于那个世界中有些东西是完美的isthatindeedthey--there'ssomethingperfectaboutthem.它们不会改变Theydon'tchange.相比之下Incontrast,现实的东西是在不断地发生变化的physicalobjectsareconstantlychanging.一个事物可能在某一时刻很矮Somethingmightbeshortatonepoint然后在另一时刻又会变高andbecometallatanotherpoint,某一时刻很丑然后变得很美uglyatonepointandbecomebeautiful--就像丑小鸭一样liketheuglyduckling.开始很丑然后变成一只美丽的天鹅Itstartsoutuglyandbecomesabeautifulswan.相比之下公正本身不会改变Incontrast,justiceitselfneverchanges.美丽本身不会改变Beautyitselfneverchanges.我们认为这些事物是永恒的Wehavethethoughtthatthesethingsareeternal,而且与现实的世界相比andindeed,beyondchange,它超越了变化incontrasttotheempiricalworld.如果你开始更多的Infact,ifyoustartthinkingmore从这个观点去思考这个世界abouttheworldfromthisperspective,我们生存的世界是很疯狂的theworldweliveiniscrazy.它几乎是出奇的矛盾It'salmostinsanelycontradictory.柏拉图认为这种疯狂就像是做梦一样Platothinksofitascrazyinthewaythatadreamis.当你被卷入梦中时Whenyou'recaughtupinthedream,你不会意识到它有多疯狂youdon'tnoticejusthowinsaneitallis.但当你退一步仔细回想Butifyoustepbackandreflectonit,让我想想Well,let'ssee,我当时在吃三明治然后突然Iwaseatingasandwichandsuddenly三明治变成了自由女神像thesandwichwastheStatueofLiberty,不过这个女神是我的母亲excepttheStatueofLibertywasmymother.她正跃过海洋Andshe'sflyingovertheocean,但是她其实只是根意大利面条exceptshe'sreallyapieceofspaghetti.这就是梦That'showdreamsare.当你置身其中好像一切都顺理成章Andwhenyou'reinit,itsortofallmakessense.你被卷入其中了Right?You'rekindofcaughtup,但当你退出来时会说butyoustepbackandsay,真是太疯狂了That'sjustinsane.柏拉图认为Well,Platothinks现实的世界也是类似的疯狂thattheempiricalworldhassomethingofthatkindofinsanity,这其中有一种矛盾性somethingofthatkindcontradictoriness,但我们身在其中一般不会注意到builtintoitthatwedon'tordinarilynotice.他是个篮球运动员He'sabasketballplayer,所以他长的很高很高sohe'sreally,reallytall,但是只有6英尺[1.8米]excepthe'sonlysixfeet.所以作为篮球运动员他又很矮很矮Sohe'sreally,reallyshortforabasketballplayer.这是只大象宝宝Thisisababyelephant,所以它很大很大soit'sreally,reallybig--但是它只是个大象宝宝exceptit'sababyelephant,所以它其实又很小很小soit'sreally,reallysmall.这个世界就这样不断的左右摇摆Theworldisconstantlyrolling--这是种柏拉图式的表达thisisaPlatonicexpression--型相间的来回摇摆rollingbetweenoneformandtheother.而且很难讲清其中的道理Andit'shardtomakesenseof.相比之下Incontrast,心灵反而能够认知到柏拉图理念themindisabletograspthePlatonicideas,柏拉图型相{\c它们是稳定的可靠的它们是andthey'restable,they'rereliable,theyare--它们如同法律我们可以领会它们they'relaw-likeandwecangraspthem.它们不会改变它们是永恒的{\cthey'reeternal.这就是柏拉图式的理念结构That's,asIsay,thePlatonicpicture.我的目的不是Now,it'snotmypurposehere试图去辩护或者反对totrytoarguefororagainst柏拉图哲学中的抽象实体这个概念Platonismwithregardtoabstractentities.就像我上次用数学举例一样AsIsuggestedintalkingabouttheexampleofmathlasttime,即便这不是一个我们都能接受的观点it'snotasillyview,evenifit'snotaview这也不一定是个愚蠢的观点thatwealltakeautomatically.但在用数学的方式进行思考时Butinthinkingaboutmath,我们都倾向于变成柏拉图主义者mostofusareinclinedtobePlatonists.我们都相信有些东西Wealldobelievesomethingmakesittrue使2加1等于3是正确的thattwoplusoneequalsthree,但这不是说现实的东西butit'snotthefactthatempiricalobjects--我们不会在现实中做实验Wedon'tdoempiricalexperiments去看看二加一是不是等于三toseewhethertwoplusoneequalsthree.我们认为Rather,wethink我们的心灵可以去领会数字中的真理ourmindcangraspthetruthsaboutnumbers.柏拉图认为万事万物都是如此Platothoughteverythingwaslikethat.我不会去主张或反对这个观点Well,I'mnotgoingtoargueforandagainstthatview--只是想简述给你们justwantedtosketchit,以便去理解那些在此基础上的论点soastounderstandtheargumentsthatturnonit.所以为了我们的目的Soforourpurposes,让我们假设柏拉图是对的let'ssupposePlatowasrightaboutthatandask,然后呢whatfollows?柏拉图认为接下来Well,Platothinkswhat'sgoingtofollowis我们就有理由去相信thatwehavesomereasontobelievei
本文标题:耶鲁大学开放课程—哲学:死亡.07.Open.Yale.course—Philosophy:Deat
链接地址:https://www.777doc.com/doc-5198860 .html