您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 谈谈高斯-勒让德公式推导过程
4章数值积分与数值微分4.1引言4.1.1数值求积的基本思想实际问题当中常常需要计算积分.有些数值方法,如微分方程和积分方程的求解,也都和积分计算相联系.依据人们所熟知的微积分基本定理,对于积分.只要找到被积函数的原函数,便有下列牛顿-莱布尼兹(Newton-Leibniz)公式:但实际使用这种积分方法往往有困难,因为大量的被积函数,诸如等等,我们找不到用初等函数表示的原函数;另外,当是由测量或数值计算给出的一张数据表时,牛顿-莱布尼兹公式也不能直接使用.因此有必要研究积分的数值计算问题.积分中值定理告诉我们,在积分区间内存在一点,成立就是说,底为而高为的矩形面积恰等于所求曲边梯形的面积(图4-1).问题在于点的具体位置一般是不知道的,因而难准确算出的值.我们将称为区间上的平均高度.这样,只要对平均高度提供一种算法,相应地便获得一种数值求积方法.如果我们用两端点“高度”和的算术平均平均作为平均高度的近似值,这样导出的求积公式(4.1.1)便是我们所熟悉的梯形公式(几何意义参看图4-2).而如果改用区间中点的“高度”近似地取代平均高度,则又可导出所谓中矩形公式(今后简称矩形公式)(4.1.2)更一般地,我们可以在区间上适当选取某些节点,然后用加权平均得到平均高度的近似值,这样构造出的求积公式具有下列形式:(4.1.3)式中称为求积节点;称为求积系数,亦称伴随节点的权.权仅仅与节点的选取有关,而不依赖于被积函数的具体形式.这类数值积分方法通常称为机械求积,其特点是将积分求值问题归结为函数值的计算,这就避开了牛顿-莱布尼兹公式需要求原函数的困难.4.1.2代数精度的概念数值求积方法是近似方法,为要保证精度,我们自然希望求积公式能对“尽可能多”的函数准确地成立,这就提出了所谓代数精度的概念.定义1如果某个求积公式对于次数不超过的多项式均能准确地成立,但对于次多项式就不准确成立,则称该求积公式具有次代数精度.不难验证,梯形公式(4.1.1)的矩形公式(4.1.2)均具有一次代数精度.一般地,欲使求积公式(4.1.3)具有次代数精度,只要令它对于都能精确成立,这就要求(4.1.4)为简洁起见,这里省略了符号中的上下标.如果我们事先选定求积节点,臂如,以区间的等距分点作为节点,这时取求解方程组(4.1.4)即可确定求积系数,而使求积公式(4.1.3)至少具有次代数精度.本章第2节介绍这样一类求积公式,梯形公式是其中的一个特例.为了构造出形如(4.1.3)的求积公式,原则上是一个确定参数和的代数问题.4.1.3插值型的求积公式设给定一组节点且已知函数在节点上的值,作插值函数(参见第2章(2.9)式).由于代数多项式的原函数是容易求出的,我们取作为积分的近似值,这样构造出的求积公式(4.1.5)称为是插值型的,式中求积系数通过插值基函数的积分得出(4.1.6)由插值余项定理(第2章的定理2)即知,对于插值型的求积公式(4.1.5),其余项(4.1.7)式中与变量有关,.如果求积公式(4.1.5)是插值型的,按式(4.1.7),对于次数不超过的多项式,其余项等于零,因而这时求积公式至少具有次代数精度.反之,如果求积公式(4.1.5)至少具有次代数精度,则它必定是插值型的.事实上,这时公式(4.1.5)对于插值基函数应准确成立,即有注意到,上式右端实际上即等于,因而式(4.1.6)成立.综上所述,我们的结论是:定理1形如(4.1.5)的求积公式至少具有次代数精度的充分必要条件是,它是插值型的.4.1.4求积公式的收敛性与稳定性定义2在求积公式(4.1.3)中,若.其中,则称求积公式(4.1.3)是收敛的.在求积公式(4.1.3)中,由于计算可能产生误差,实际得到,即.记.如果对任给小正数,只要误差充分小就有,(4.1.8)它表明求积公式(4.1.3)计算是稳定的,由此给出:定义3在任给,若,只要就有(4.1.8)成立,则称求积公式(4.1.3)是稳定的.定理2若求积公式(4.1.3)中系数,则此求积公式是稳定的.证明对任给,若取,对都有,则有由定义3可知求积公式(4.1.3)是稳定的.证毕.定理2表明只要求积系数,就能保证计算的稳定性.4.2牛顿-4.3柯特斯公式4.2.1柯特斯系数设将积分区间划分为等分,步长,选取等距节点构造出的插值型求积公式(4.2.1)称为牛顿-柯特斯(Newton-Cotes)公式,式中称为柯特斯系数.按(4.1.6)式,引进变换,则有(4.2.2)由于是多项式的积分,柯特斯系数的计算不会遇到实质性的困难.当时,这时的求积公式就是我们所熟悉的梯形公式(4.1.1).当时,按(4.2.2)式,这时柯特斯系数为相应的求积公式是下列辛普森(Simpson)公式,(4.2.3)而当的牛顿-柯特斯公式则特别称为柯特斯公式,其形式是(4.2.4)为里.下表列出柯特斯系数表开头的一部分.12345678从表中看到时,出现负值,于是有,特别地,假定,且,则有它表明初始数据误差将会引起计算结果误差增大,即计算不稳定,故时的牛顿-柯特斯公式是不用的.4.2.2偶阶求积公式的代数精度作为插值型的求积公式,阶的牛顿-柯特斯公式至少具有次代数精度(定理1).实际的代数精度能否进一步提高呢?先看辛普森公式(4.2.3),它是二阶牛顿-柯特斯公式,因此至少具有二次代数精度.进一步用进行检验,按辛普森公式计算得另一方面,直接求积得.这时有,即辛普森公式即对次数不超过三次的多项式均能准确成立,又容易验证它对通常是不准确的,因此,辛普森公式实际上具有三次代数精度.一般地,我们可以证明下述论断:定理3当阶为偶数时,牛顿-柯特斯公式(4.2.1)至少具有次代数精度.证明我们只要验证,当为偶数时,牛顿-柯特斯公式对的余项为零.按余项公式(4.1.7),由于这里,从而有.引进变换,并注意到,有,若为偶数,则为整数,再令,进一步有,据此可以断定,因为被积函数是个奇函数.证毕.4.2.3几种低阶求积公式的余项首先考虑梯形公式,按余项公式(4.1.7),梯形公式(4.1.1)的余项,这里积分的核函数在区间上保号(非正),应用积分中值定理,在内存在一点,使.(4.2.5)再研究辛普森公式(4.2.3)的余项.为此构造次数不超过3的多项式,使满足(4.2.6)这里.由于辛普森公式具有三次代数精度,它对于构造出的三次多项式是准确的,即,而利用插值条件(4.2.6)知,上式右端实际上等于按辛普森公式(4.2.3)求得的积分值S,因此积分余项.对于满足条件(4.2.6)的多项式,其插值余项由第2章(2.5.11)得,故有.这时积分的核函数在上保号(非正),再用积分中值定理有.(4.2.7)关于柯特斯公式(4.2.4)的积分余项,这里不再具体推导,仅列出结果如下:.(4.2.8)4.3复4.4化求积公式前面已经指出高阶牛顿-柯特斯求公式不稳定的,因此,不可能通过提高阶的方法来提高求积精度.为了提高精度通常可把积分区间分成若干子区间(通常是等分),再在每个子区间上用低阶求积公式.这种方法称为复化求积法.本节讨论复化梯形公式与复化辛普森公式.4.4.1复4.4.2化梯形公式将区间划分为等分,分点,在每个子区间上采用梯形公式(4.1.1),则得(4.3.1)记,(4.3.2)称为复化梯形公式,其余项可由(4.2.5)得.由于,且.所以使.于是复化梯形公式余项为.(4.3.3)可以看出误差是阶,且由(4.3.3)立即得到,当,则,即复化梯形公式是收敛的.事实上只要设,则可得到收敛性,因为只要把改写为.当时,上式右端括号内的两个和式均收敛到积分,所以复化梯形公式(4.3.2)收敛.此外,的求积系数为正,由定理2知复化梯形公式是稳定的.4.4.3复4.4.4化辛普森求积公式将区间分为等分,在每个子区间上采用辛普森公式(4.2.3),若记,则得(4.3.4)记(4.3.5)称为复化辛普森求积公式.其余项由(4.2.7)得,于是当时,与复化梯形公式相似有.(4.3.6)由(4.3.6)看出,误差阶为,收敛性是显然的,实际上,只要则可得收敛性,即此外,由于中求积系数均为正数,故知复化辛普森公式计算稳定.例1对于函数,给出的函数表(见表4-2),试用复化梯形公式(4.3.2)及复化辛普森公式(4.3.5)计算积分,并估计误差.解将积分区间[0,1]划分为8等分,应用复化梯形法求得;而如果将[0,1]分为4等分,应用复化辛普森法有.比较上面两个结果和,它们都需要提供9个点上的函数值,计算量基本相同,然而精度却差别很大,同积分的准确值I=0.9460831比较,复化梯形公式的结果只有两位有效数字,而复化辛普森的结果却有六位有效数字.为了利用余项公式估计误差,要求的高阶导数,由于,所以有,于是.由(4.3.3)得复化梯形公式的误差.对复化辛普森公式误差,由(4.3.6)得.4.5高斯求积公式4.5.1一般理论形如(1.3)的机械求积公式01/81/43/81/25/83/47/8110.99739780.98961580.97672670.95885100.93615560.90885160.87719250.8414709含有个待定参数.当为等距节点时得到的插值求积公式其代数精度至少为次,如果适当选取,有可能使求积公式具有次代数精度,这类求积公式称为高斯(Gauss)求积公式.为使问题更具有一般性,我们研究带权积分,这里为权函数,类似(4.1.3),它的求积公式为,(4.5.1)为不依赖于的求积系数,为求积节点,可适当选取及使(4.5.1)具有次代数精度.定义4如果求积公式(4.5.1)具有次代数精度,则称其节点为高斯点,相应公式(4.5.1)称为高斯求积公式.根据定义要使使(4.5.1)具有次代数精度,只要取,对,(4.5.1)精确成立,则得.(4.5.2)当给定权函数,求出右端积分,则可由(4.5.2)解得及.例5试构造下列积分的高斯求积公式:.(4.5.3)解令公式(4.5.3)对于准确成立,得(4.5.4)由于,利用(4.5.4)的第1式,可将第2式化为.同样地,利用第2式化第3式,利用第3式化第4式,分别得到从上面三式子消去,有进一步整理得由此解出,从而求出于是形如(4.5.3)的高斯求积公式是.从此例看到求解非线性方程组(4.5.2)较为复杂,通常就很难求解.故一般不通过求解方程(4.5.2)求及,而从分析高斯点的特性来构造高斯求积公式.定理5插值型求积公式(4.5.1)的节点是高斯点的充分必要条件是以这些节点为零点的多项式与任何次数不超过的多项式带权正交,即.(4.5.5)证明必要性.设,则,因此,如果是高斯点,则求积公式(4.5.1)对于精确成立,即有.因,故(4.5.5)成立.再证充分性.对于,用除,记商为,余式为,即,其中.由(4.5.5)可得.(4.5.6)由于所给求积公式(4.5.1)是插值型的,它对于是精确的,即.再注意到,知,从而由(4.5.6)有.可见求积公式(4.5.1)对一切次数不超过的多项式均精确成立.因此,为高斯点.证毕.定理表明在上带权的次正交多项式的零点就是求积公式(4.5.1)的高斯点,有了求积节点,再利用(4.5.2)对成立,则得到一组关于求积系数的线性方程.解此方程则得.也可以直接由的插值型多项式求出求积系数.下面讨论高斯求积公式(4.5.1)的余项.利用在节点的埃尔米特插值,即.于是两端乘,并由到积分,则得.(4.5.7)其中右端第一项积分对次多项式精确成立,故.由于,故由积分中值定理得(4.5.1)的余项为.(4.5.8)下面讨论高斯求积公式的稳定性与收敛性.定理6高斯求积公式(4.5.1)的求积系数全是正的.证明考察,它是次多项式,因而是次多项式,故高斯求积公式(4.5.1)对于它能够准确成立,即有.注意到,上式右端实际上即等于,从而有.定理得证.由本定理及定理2,则得推论高斯求积公式(4.5.1)是稳定的.定理7设,则高斯求积公式(4.5.1)是收敛的,即.证明见[1].4.5.2高斯-4.5.3勒让德求积公式在高斯求积公式(4.5.
本文标题:谈谈高斯-勒让德公式推导过程
链接地址:https://www.777doc.com/doc-5207279 .html