您好,欢迎访问三七文档
当前位置:首页 > 金融/证券 > 投融资/租赁 > 遗传算法综述及简单应用实例
智能优化计算华东理工大学自动化系2010年1遗传算法综述及简单应用实例及Matlab程序智能优化计算华东理工大学自动化系2010年24.1遗传算法简介4.1.1遗传算法的产生与发展4.1.2生物进化理论和遗传学的基本知识4.1.3遗传算法的思路与特点4.1.4遗传算法的基本操作4.1.5遗传算法的应用4.2基本遗传算法4.2.1简单函数优化的实例4.2.2遗传基因型4.2.3适应度函数及其尺度变换4.2.4遗传操作——选择4.2.5遗传操作——交叉/基因重组4.2.6遗传操作——变异4.2.7算法的设计与实现4.2.8模式定理►智能优化计算华东理工大学自动化系2010年34.1遗传算法简介产生早在50年代,一些生物学家开始研究运用数字计算机模拟生物的自然遗传与自然进化过程;1963年,德国柏林技术大学的I.Rechenberg和H.P.Schwefel,做风洞实验时,产生了进化策略的初步思想;60年代,L.J.Fogel在设计有限态自动机时提出进化规划的思想。1966年Fogel等出版了《基于模拟进化的人工智能》,系统阐述了进化规划的思想。4.1.1遗传算法的产生与发展智能优化计算华东理工大学自动化系2010年44.1遗传算法简介产生60年代中期,美国Michigan大学的J.H.Holland教授提出借鉴生物自然遗传的基本原理用于自然和人工系统的自适应行为研究和串编码技术;1967年,他的学生J.D.Bagley在博士论文中首次提出“遗传算法(GeneticAlgorithms)”一词;1975年,Holland出版了著名的“AdaptationinNaturalandArtificialSystems”,标志遗传算法的诞生。4.1.1遗传算法的产生与发展智能优化计算华东理工大学自动化系2010年54.1遗传算法简介发展70年代初,Holland提出了“模式定理”(SchemaTheorem),一般认为是“遗传算法的基本定理”,从而奠定了遗传算法研究的理论基础;1985年,在美国召开了第一届遗传算法国际会议,并且成立了国际遗传算法学会(ISGA,InternationalSocietyofGeneticAlgorithms);4.1.1遗传算法的产生与发展智能优化计算华东理工大学自动化系2010年64.1遗传算法简介发展1988年,Holland的学生D.J.Goldherg出版了“GeneticAlgorithmsinSearch,Optimization,andMachineLearning”,对遗传算法及其应用作了全面而系统的论述;1991年,L.Davis编辑出版了《Handbookofgeneticalgorithms》,其中包括了遗传算法在工程技术和社会生活中大量的应用实例。4.1.1遗传算法的产生与发展智能优化计算华东理工大学自动化系2010年74.1遗传算法简介达尔文的自然选择说遗传(heredity):子代和父代具有相同或相似的性状,保证物种的稳定性;变异(variation):子代与父代,子代不同个体之间总有差异,是生命多样性的根源;生存斗争和适者生存:具有适应性变异的个体被保留,不具适应性变异的个体被淘汰。自然选择过程是长期的、缓慢的、连续的过程。4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年84.1遗传算法简介遗传学(Genetics)基本概念与术语染色体(chromosome):遗传物质的载体;脱氧核糖核酸(DNA):大分子有机聚合物,双螺旋结构;遗传因子(gene):DNA或RNA长链结构中占有一定位置的基本遗传单位;4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年94.1遗传算法简介遗传学基本概念与术语基因型(genotype):遗传因子组合的模型;表现型(phenotype):由染色体决定性状的外部表现;4.1.2生物进化理论和遗传学的基本知识11111111110111智能优化计算华东理工大学自动化系2010年104.1遗传算法简介遗传学基本概念与术语基因座(locus):遗传基因在染色体中所占据的位置,同一基因座可能有的全部基因称为等位基因(allele);个体(individual):指染色体带有特征的实体;种群(population):个体的集合,该集合内个体数称为种群的大小;4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年114.1遗传算法简介遗传学基本概念与术语进化(evolution):生物在其延续生存的过程中,逐渐适应其生存环境,使得其品质不断得到改良,这种生命现象称为进化;适应度(fitness):度量某个物种对于生存环境的适应程度。对生存环境适应程度较高的物种将获得更多的繁殖机会,而对生存环境适应程度较低的物种,其繁殖机会就会相对较少,甚至逐渐灭绝;4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年124.1遗传算法简介遗传学基本概念与术语选择(selection):指决定以一定的概率从种群中选择若干个体的操作;复制(reproduction):细胞在分裂时,遗传物质DNA通过复制而转移到新产生的细胞中,新的细胞就继承了旧细胞的基因;交叉(crossover):在两个染色体的某一相同位置处DNA被切断,其前后两串分别交叉组合形成两个新的染色体。又称基因重组,俗称“杂交”;4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年134.1遗传算法简介遗传学基本概念与术语变异(mutation):在细胞进行复制时可能以很小的概率产生某些复制差错,从而使DNA发生某种变异,产生出新的染色体,这些新的染色体表现出新的性状;编码(coding):表现型到基因型的映射;解码(decoding):从基因型到表现型的映射。4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年144.1遗传算法简介进化论与遗传学的融合1930~1947年,达尔文进化论与遗传学走向融合,Th.Dobzhansky1937年发表的《遗传学与物种起源》是融合进化论与遗传学的代表作。生物进化与智能学的关系生物物种作为复杂系统,具有奇妙的自适应、自组织和自优化能力,这是一种生物在进化过程中体现的智能,也是人工系统梦寐以求的功能。4.1.2生物进化理论和遗传学的基本知识智能优化计算华东理工大学自动化系2010年154.1遗传算法简介遗传算法的基本思路4.1.3遗传算法的思路与特点智能优化计算华东理工大学自动化系2010年164.1遗传算法简介自组织、自适应和自学习性在编码方案、适应度函数及遗传算子确定后,算法将利用进化过程中获得的信息自行组织搜索。本质并行性内在并行性与内含并行性不需求导只需目标函数和适应度函数概率转换规则强调概率转换规则,而不是确定的转换规则4.1.3遗传算法的思路与特点智能优化计算华东理工大学自动化系2010年174.1遗传算法简介简单实例1.产生初始种群2.计算适应度4.1.4遗传算法的基本操作0001100000010111100100000001011001110100101010101011100101101001011011110000000110011101000001010011(8)(5)(2)(10)(7)(12)(5)(19)(10)(14)智能优化计算华东理工大学自动化系2010年184.1遗传算法简介简单实例3.选择4.1.4遗传算法的基本操作个体染色体适应度选择概率累积概率10001100000820101111001530000000101241001110100105101010101076111001011012710010110115811000000011991001110100101000010100111488+5+2+10+7+12+5+19+10+140.08695758+5+2+10+7+12+5+19+10+140.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.152174智能优化计算华东理工大学自动化系2010年194.1遗传算法简介简单实例3.选择4.1.4遗传算法的基本操作个体染色体适应度选择概率累积概率1000110000082010111100153000000010124100111010010510101010107611100101101271001011011581100000001199100111010010100001010011140.0869570.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.1521740.0869570.1413040.1630430.2717390.3478260.4782610.5326090.7391300.8478261.000000智能优化计算华东理工大学自动化系2010年204.1遗传算法简介简单实例3.选择在0~1之间产生一个随机数:4.1.4遗传算法的基本操作个体染色体适应度选择概率累积概率1000110000082010111100153000000010124100111010010510101010107611100101101271001011011581100000001199100111010010100001010011140.0869570.0543480.0217390.1086960.0760870.1304350.0543480.2065220.1086960.1521740.0869570.1413040.1630430.2717390.3478260.4782610.5326090.7391300.8478261.0000000.0702210.5459290.7845670.4469300.5078930.2911980.7163400.2709010.3714350.854641淘汰!淘汰!智能优化计算华东理工大学自动化系2010年2100011000001110010110110000000110011101001010101010111001011010010110111100000001100111010000010100114.1遗传算法简介简单实例4.交叉4.1.4遗传算法的基本操作00011000001110010110110000000110011101001010101010111001011010010110111001110100110000000100010100110001111010000001011011110000101101011011110000100111010000011001110100110000000110101010001010010011智能优化计算华东理工大学自动化系2010年224.1遗传算法简介简单实例5.变异4.1.4遗传算法的基本操作00011000001110010110110000000110011101001010101010111001011010010110111100000001100111010000010100110001111010000001011011110000101101011011110000100101010000011001110100110000000110101010001010010011000110000011100101101100000001100111010010101010101110010110100101101111000000011001110100000101001100011
本文标题:遗传算法综述及简单应用实例
链接地址:https://www.777doc.com/doc-5215019 .html