您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 《数学思想方法》复习题三
《数学思想方法》复习题三1.为什么说《几何原本》是一个封闭的演绎体系?①因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。因此《几何原本》是一个封闭的演绎体系。②另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。③所以,《几何原本》是一个封闭的演绎体系。2.为什么说最早使用数学模型方法的是中国人?:①因为在中国汉代的古算书《九章算术》中就已经系统地使用了数学模型。《九章算术》将246个题目归结为九类,即九种不同的数学模型,分列为九章。②它在每一章中所设置的问题,都是从大量的实际问题中选择具有典型意义的现实原型,然后再通过“术”(即算法)转化成数学模型。其中有些章就是专门探讨某种数学模型的应用,③例如“勾股”、“方程”等章。这在世界数学史上是最早的。因此,我们说最早使用数学模型方法的是中国人。3.什么是类比猜想?并举一个例子说明。①人们运用类比法,根据一类事物所具有的某种属性,得出与其类似的事物也具有这种属性的一种推测性的判断,即猜想,这种思想方法称为类比猜想。②例如,分式与分数非常相似,只不过是用字母替代数而已。因此,我们可以猜想,分式与分数在定义、基本性质、约分、通分、四则运算等方面都是对应相似的。4.简述表层类比,并用举例说明。:①表层类比是根据两个被比较对象的表面形式或结构上的相似所进行的类比。这种类比可靠性较差,结论具有很大的或然性。②例如,从类比出是错误的,而类比出在数列极限存在的条件下是正确的。③又如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结构上的类比。5.数学思想方法教学为什么要遵循循序渐进原则?试举例说明。:①数学思想方法的形成难于知识的理解和一般技能的掌握,它需要学生深入理解事物之间的本质联系。②学生对每种数学思想方法的认识都是在反复理解和运用中形成的,是从个别到一般,从具体到抽象,从感性到理性,从低级到高级的沿着螺旋式方向上升的。③例如,学生理解数形结合方法可从小学的画示意图找数量关系着手孕育;在学习数轴时,要求学生会借助数轴来表示相反数、绝对值、比较有理数的大小等。在数列极限存在的条件下是正确的。③又如,由三角形内角平分线性质,类比得到三角形外角平分线性质,就是一种结构上的类比。1.为什么说数学模型方法是一种迂回式化归?正确答案:①运用数学模型方法解决问题时,不是直接求出实际问题的解,因为这样做往往是行不通的或者花费过分昂贵。②而是先将实际问题化归为一个合适的数学模型,然后通过求数学模型的解间接求出原实际问题的解,走的是一条迂回的道路。③因此,我们说数学模型方法是一种迂回式化归。2.特殊化在数学教学中的作用有哪些?正确答案:①利用特殊值(图形)解选择题。②利用特殊化探求问题结论。③利用特例检验一般结果。④利用特殊化探索解题思路。3.为什么数形结合方法在数学中有着非常广泛的应用?正确答案:①数学研究的是现实世界的数量关系和空间形式,而现实世界本身是同时兼备数与形两种属性的,既不存在有数无形的客观对象,也不存在有形无数的客观对象。②因此,在数学发展的进程中,数和形常常结合在一起,在内容上互相联系,在方法上互相渗透,在一定条件下互相转化。③充分运用数形结合方法解决数学问题,对于沟通代数、三角、几何各分支之间的联系,提高分析问题、解决问题的能力具有重要作用。4.什么是公理方法和公理体系?正确答案:简要地说就是从初始概念和公理出发,按照一定的规律定义出其他所有的概念,推导出其他一切命题的一种演绎方法(5分)。公里体系由初始命题、公理、逻辑规则、定理等构成(5分)。5.简述数学思想方法教学的几个主要阶段。正确答案:①潜意识阶段——在这个阶段学生只注意数学知识的学习,注意知识积累,而未曾注意到对这些知识起到横向联系和固定作用的思想方法,或者只是处于一种“朦朦胧胧”、“若有所悟”的状况;(3分)②明朗化阶段——随着运用同一种数学思想方法解决不同的数学问题的实践机会的增多,隐藏在数学知识后面的思想方法就会逐渐引起学生的注意和思考,直至产生某种程度的领悟。当经验和领悟积累到一定程度时,这种事实上已经被应用多次的思想方法就会凸现出来,学生开始理解解题过程中所使用的方法与策略,并且概括总结出这一思想方法;(3分)③深刻理解阶段——在这个阶段,学生基本上能正确运用某种数学思想方法进行探索和思考,以求得问题的解决。同时,在解决问题的实践过程中,学生又将加深了对数学思想方法的理解,并养成了有意识地、自觉地运用数学思想方法解决问题的思维习惯。(4分)1.模型化的方法、开放性的归纳体系及算法化的内容之间的关系正确答案:模型化的方法与开放性的归纳体系及算法化的内容之间是互相适应并且互相促进的。(2分)虽然,各个数学模型之间也有一定的联系,但是它们更具有相对独立性。一个数学模型的建立与其它数学模型之间并不存在逻辑依赖关系。正因为如此,所以可以根据需要随时从社会实践中提炼出新的数学模型(3分)。另一方面,由于运用模型化的方法研究数学,新的数学模型从何产生?只有寻找现实原型、立足于现实问题的研究,这就不可能产生封闭式的演绎体系(2分)。解决实际问题还提出了这样的要求:对由模型化方法求得的结果必须能够检验其正确性和合理性,为了能够求得实际可用的结果,于是算法化的内容也就应运而生(3分)。2.算术与代数的解题方法基本思想有何区别?正确答案:区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算(5分);算术方法的关键之处是列算式,而代数方法的关键之处列方程(5分)。3.简单说明社会科学数学化的主要原因?正确答案:第一,社会管理需要精确化的定量依据(2.5分);第二,社会科学理论体系的发展需要精确化(2.5分);第三,出现了一些适合研究社会历史现象的新的数学分支(2.5分);第四,电子计算机的发展与应用(2.5分)。4.第一次数学危机最终如何解决了?正确答案:第一次数学危机并没有轻易地很快解决。最后约在公元前370年,才由柏拉图的学生欧多克斯解决了(5分)。他创立了新的比例理论,微妙地处理了可公度和不可公度。他处理不可公度的方法,被欧几里得《几何原本》第二卷(比例论)收录。这个问题到19世纪戴德金及康托尔等人建立了现代实数理论才算彻底解决(5分)。5.何谓化归方法?它遵循哪三个原则?正确答案:所谓化归方法,就是将一个问题进行变形,使其归结为另一已能解决的问题,既然已可解决,那么也就解决了(5分)。化归方法遵循三个原则:简单化原则、熟悉化原则、和谐化原则(5分)。1.我国数学教育存在哪些问题?正确答案:①数学教学重结果,轻过程;重解题训练,轻智力、情感开发;不重视创新能力培养,虽然学生考试分数高,但是学习能力低下;②重模仿,轻探索,学习缺少主动性,缺乏判断力和独立思考能力;③学生学业负担过重。原因是课堂教学效益不高,教学围绕升学考试指挥棒转,不断重复训练各种题型和模拟考试,不少教师心存以量求质的想法,造成学生学业负担过重。2.《几何原本》贯彻哪两条逻辑要求?正确答案:《几何原本》贯彻了两条逻辑要求。①第一,公理必须是明显的,因而是无需加以证明的,其是否真实应受推出的结果的检验,但它仍是不加证明而采用的命题;初始概念必须是直接可以理解的,因而无需加以定义。②第二,由公理证明定理时,必须遵守逻辑规律与逻辑规则;同样,通过初始概念以直接或间接方式对派生概念下定义时,必须遵守下定义的逻辑规则。3.简述数学抽象的特征。正确答案:数学抽象有以下特征:①数学抽象具有无物质性;②数学抽象具有层次性;③数学抽象过程要凭借分析或直觉;④数学的抽象不仅有概念抽象还有方法抽象4.什么是算法的有限性特点?试举一个不符合算法有限性特点的例子。①算法得有限性是指一个算法必须在有限步之内终止。②例如,对初始数据20和3,计算过程无论怎样延续这个过程都不能结束,同时也不会出现中断。如果在某一处中断过程,我们只能得到一个近似的、不准确的结果。而且如果在某一步中断计算过程已经不是执行原来的算法。可见,十进小数除法对于20和3这组数不符合算法的“有限性”特点。5.简述将“化隐为显”列为数学思想方法教学的一条原则的理由。正确答案:①由于数学思想方法往往隐含在知识的背后,知识教学虽然蕴含着思想方法,但是如果不是有意识地把数学思想方法作为教学对象,在数学学习时,学生常常只注意到处于表层的数学知识,而注意不到处于深层的思想方法。②因此,进行数学思想方法教学时必须以数学知识为载体,把隐藏在知识背后的思想方法显示出来,使之明朗化,才能通过知识教学过程达到思想方法教学之目的。1、简述《国家数学课程标准》的几个主要特点。答:2001年6月教育部推行了试用的九年义务教育阶段《国家数学课程标准》(实验稿),充分体现了数学课程改革与发展的内涵、特点和具体目标,并呈现下列八个特点:1)、把“现实数学”作为数学课程的一项内容。即为学生准备的数学应该是与现实世界密切联系的数学,且能够在实际中得到应用的数学。2)、把“数学化”作为数学课程的一个目标。学生学习数学化的过程是将学生的现实数学进一步提高、抽象的过程。3)、把“再创造”作为数学教育的一条原则。把“已完成的数学”当成是“未完成的数学”来教,给学生提供“再创造”的机会。4)、把“问题解决”作为数学教学的一种模式。《数学课程标准》在“学段目标”中的“解决问题”方面的具体阐述,实际上提出了“问题解决”的教学模式,即:情境—问题—探索—结论—反思。5)、把“数学思想方法”作为课程体系的一条主线。要求学生掌握基本的数学思想方法。6)、把“数学活动”作为数学课程的一个方面。强调学生的数学活动,注重“向学生提供充分从事数学活动的机会”,帮助他们“获得广泛的数学活动的经验”。7)、把“合作交流”看成学生学习数学的一种方式。要让学生在解决问题的过程中“学会与他人合作”,并能“与他人交流思维的过程和结果”。8)、把“现代信息技术”作为学生学习数学的一种工具。1、论述社会科学数学化的主要原因。答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。2、论述数学的三次危机对数学发展的作用。答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展简述公理方法历史发展的各个阶段答:公理方法经历了具体的公理体系、抽象的公理体系和形式化的公理体系三个阶段。第一个具体的公理体系就是欧几里得的《几何原本》。非欧几何是抽象的公理体系的典型代表。希尔伯特的《几何基础》开创了形式化的公理体系的先河,现代数学的几乎所有理论都是用形式公理体系表述出来的,现代科学也尽量采用形式公理法作为研究和表述手段。在实施数学思想方法教学时应注意哪些问题?p205答:(1)要把数学思想方法的学习纳入教学目标,并在教案中设计好数学思想方法的教学内容和教学过程,这就要求教师具备较高的数学修养,具备数学方法论、数学发展史、数学思想方法的基础知识,更需要教师更新教学观念,不断提高对教学重要性的认识。(2)重视数学知识发生、发展的过程,认真设计数学思想方法教学
本文标题:《数学思想方法》复习题三
链接地址:https://www.777doc.com/doc-5217142 .html