您好,欢迎访问三七文档
极限学习机(ExtremeLearningMachine,ELM)一,ELM概要极限学习机是一种针对单隐含层前馈神经网络(Single-hiddenLayerFeedforwardNeuralNetwork,SLFN)的新算法。相对于传统前馈神经网络训练速度慢,容易陷入局部极小值点,学习率的选择敏感等缺点,ELM算法随机产生输入层与隐含层的连接权值及隐含层神经元的阈值,且在训练过程中无需调整,只需要设置隐含层神经元的个数,便可以获得唯一的最优解。与之前的传统训练方法相比,ELM方法具有学习速度快,泛化性能好等优点。二,ELM概述传统的典型单隐含层前馈神经网络结构如下图一所示,由输入层,隐含层和输出层组成,输入层与隐含层,隐含层与输出层神经元间全连接。其中,输入层有n个神经元,对应n个输入变量;隐含层有l个神经元;输出层有m个神经元,对应m个输出变量。在不失一般性的情况下,设输入层与隐含层间的连接权值W为nlllnnln212222111211.....................(1)其中,jiw表示输入层第i个神经元与隐含层第j个神经元的连接权值。设隐含层与输出层间的连接权值为mllmllmm.....................212222111211(2)其中,jk表示隐含层第j个神经元与输出层第k个神经元间的连接权值。设隐含层神经元的阈值b为121llbbbb(3)设具有Q个样本的训练集输入矩阵X和输出矩阵Y分别为QnnQnnQQxxxxxxxxxX.....................212222111211QmmQmmQQyyyyyyyyyY.....................212222111211(4)设隐含层神经元的激活函数为)(xg,则由图一可知,网络的输出T为QmQtttT],...,,[21(5)),...,2,1()()()(111211121Qjbxwgbxwgbxwgttttmliijiimliijiiliijiimmjjjj其中,],...,,[21iniii;Tnjjjjxxxx,...,,21式(5)可表示为'TH(6)其中,'T为矩阵T的转置;H称为神经网络的隐含层输出矩阵,具体形式如下:lQlQlQQllllQllbxwgbxwgbxwgbxwgbxwgbxwgbxwgbxwgbxwgxxxbbb)(...)()(............)(...)()()(...)()(),...,,,...,,,,...,,(221122221211212111212121(7)在前人的基础上,黄广斌等人提出了以下两个定理:定理1给定任意Q个不同样本(),(iitx,其中,nTiniiiRxxxx],...,,[21,mimiiiRtttt],...,,[21,一个任意区间无限可微的激活函数Rg:R,则对于具有Q个隐含层神经元的SLFN,在任意赋值niRw和Rbi的情况下,其隐含层输出矩阵H可逆且有0||||'TH.定理2给定任意Q个不同样本),(iitx,其中,nTiniiiRxxxx],...,,[21,mimiiiRtttt],...,,[21,给定任意小误差0,和一个任意区间无限可微的激活函数Rg:R,则总存在一个含有K)(QK个隐含层神经元的SLFN,在任意赋值niRw和Rbi的情况下,有||||'THmMMN.由定理1可知,若隐含层神经元个数与训练集样本个数相等,则对于任意的w和b,SLFN都可以零误差逼近训练样本,即0||||1jQjjyt(8)其中,),...,2,1(],...,,[21QjyyyyTmjjjj.然而,当训练样本个数Q较大时,为了减少计算量,隐含层神经元个数K通常取比Q小的数,由定理2可知,SLFN的训练误差逼近一个任意的0,即||||1jQjjyt(9)因此,当激活函数)(xg无限可微时,SLFN的参数并不需要全部进行调整,w和b在训练前可以随机选择,且在训练过程中保持不变。而隐含层和输出层的连接权值可以通过求解以下方程组的最小二乘解获得:||||min'TH(10)其解为'^TH(11)其中,H为隐含层输出矩阵H的PenroseMoore广义逆.三,ELM的学习算法由以上分析可知,ELM在训练之前可以随机产生w和b,只需确定隐含层神经元个数及隐含层神经元的激活函数(无限可微),即可计算出.具体地,ELM的学习算法主要有以下几个步骤:(1)确定隐含层神经元个数,随机设定输入层与隐含层的连接权值w和隐含层神经元的阈值b;(2)选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩阵H;(3)计算输出层权值'^^:TH.值得一提的是,相关研究结果表明,在ELM中不仅许多非线性激活函数都可以使用(如S型函数,正弦函数和复合函数等),还可以使用不可微函数,甚至使用不连续的函数作为激活函数。四,ELM当前研究现状ELM以其学习速度快,泛化性能好等优点,引起了国内外许多专家和学者的研究和关注。ELM不仅适用于回归,拟合问题,亦适用于分类,模式识别等领域,因此,其在各个领域均得到广泛的应用。同时,不少改进的方法和策略也被不断提及,ELM的性能也得到了很大的提升,其应用范围亦愈来愈广,其重要性亦日益体现出来。
本文标题:极限学习机原理介绍
链接地址:https://www.777doc.com/doc-5218082 .html