您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2016年第22届“华杯赛”决赛初二组试题
-1-H6GFEDCBA第二十二届华罗庚金杯少年数学邀请赛决赛试题(初中二年级组)(时间:2017年3月11日10:00~11:30)一、填空题(每小题10分,共80分)1.计算39623+6=.2.如果2017ab,那么a4+b4+2a2b2-a3b-ab3a2+b2+3ab=.3.在平面直角坐标系xOy中,一次函数ykxb的图象过点(1,1)A,与坐标轴围成的三角形面积为2,这样的一次函数有个.4.如右图,两个边长为6的正方形ABFE和EFCD拼成长方形ABCD.点G在线段ED上,连接BG交EF于点H.如果五边形CDGHF的面积为33,那么线段BG的长等于.5.已知311,,,pqpqqp都是正整数,那么p2+q2的最大值等于.6.某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每个人至少选择一种,可以多选.某班30名学生的调查结果如下:(a)没选苹果的学生中,选香蕉的人数是选梨的人数的2倍;(b)三种水果都选的学生有7人;(c)在恰好选了两种水果的学生中,选择香蕉和梨组合的人数比选其它组合的人数之和多3人;(d)在只选一种水果的学生中,恰好有一半选了苹果.那么,只选了一种水果的学生有人.总分学校____________姓名_________参赛证号密封线内请勿答题第二十二届华罗庚金杯少年数学邀请赛决赛试题(初中二年级组)-2-ABHGCIDEF7.如右图,在梯形ABCD中,AB∥DC,4AB,1DC,分别以AD,BC为边向外作正方形ADEF与正方形BHGC,I为线段EG的中点,那么△DCI的面积等于.8.用[]x表示不大于数x的最大整数.已知正整数n的平方的十位数字是7,那么,100100nn的所有可能值的和等于.二、解答下列各题(每小题10分,共40分,要求写出简要过程)9.已知2221abc,3111111bacacbcba,求abc的值.10.如右图,等腰直角三角形PQR的斜边QR的长为2.正方形ABCD的边AB在QR上,边DC过点P,边DA,CB分别交PQ,PR于点M,N.当AB在QR上水平滑动时,△QAM与△BRN的周长和是否为定值?说明理由.11.求证:任意的5个整数中,必定有两个整数的平方差是7的倍数.12.正整数,ab,满足100ab,abqab(q是正整数),问ab可以取的值有多少个?三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.如右图,△ABC,△AEF和△BDF均为正三角形,且+60ABFAFBECDo,求AFC的度数.14.直线a平行于直线b,a上有5个点125,,,AAAL,b上有5个点125,,,BBBL,连接线段(,1,2,3,4,5)ijABij.所得到的图形中,三角形最多有多少个?ABCDEFQAMDPCNRB
本文标题:2016年第22届“华杯赛”决赛初二组试题
链接地址:https://www.777doc.com/doc-5225424 .html