您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 解直角三角形的应用(仰角和俯角问题)
南雅中学范韵解直角三角形应用(一)每周一清晨,学校的全体师生都要举行升旗仪式。可是我们经常发现,在国歌声中,旗手升旗的速度有快有慢,很难做到与音乐的节奏同步。现在我们学校准备投资换一根电动旗杆。请你帮忙计算国旗上升的速度,让国旗上升的速度与音乐同步。课堂引入利用三角形相似可以解决一些不能直接测量的物体的长度的问题除了用相似,还可以用其他方法来测量这些不能直接测量的物体的长度吗?探究1:如图,小明发现了另外一个利用解直角三角形,测量操场上旗杆高度的方法,离旗杆底部10米远处,目测旗杆的顶部,仰角为30度,并已知目高为1.65米.然后他很快就算出旗杆的高度了。你能将实际问题归结为数学问题吗?30°10米1.65米ABCDE?解:由题意得,在Rt△ABE中练习1:如图,小兰发现了另外一个测量操场上旗杆高度的方法,她把测角仪搬到教学楼的三楼窗口处,测得旗杆的顶部仰角为45°,测得旗杆底部俯角为30°,教学楼离旗杆底部200米,请你帮忙计算出旗杆的高度。探究2:如图,小兰发现因为刚下过雨旗杆旁边有一滩水,不太方便测自己离旗杆得距离,她在A处测得旗杆的顶部仰角为45°,然后后退10米测得旗杆的顶部仰角为30°,然后她也很快就算出旗杆的高度了。思考:你能将实际问题归结为数学问题吗?解:由题意得,在Rt△ABE中青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处观察羊羊们时,发现懒洋洋在大树底下睡懒觉,此时,测得懒洋洋所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒种后能抓到懒羊羊?(结果精确到个位).答案:约7秒巩固提升1.把实际问题转化成数学问题,这个转化包括两个方面:一是将实际问题的图形转化为几何图形,画出正确的示意图;二是将已知条件转化为示意图中的边、角或它们之间的关系.2.把数学问题转化成解直角三角形问题,如果示意图不是直角三角形,可添加适当的辅助线,画出直角三角形.思想与方法衡阳迴雁峰学校操场上的国旗杆要更换,要求新旗杆与旧旗杆一样高,学校决定把测量旧旗杆高的任务交给我们,为了课下顺利完成测量任务,今天请同学们设计出一套切实可行的测量方案。青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处观察羊羊们时,发现懒洋洋在大树底下睡懒觉,此时,测得懒洋洋所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒种后能抓到懒羊羊?(结果精确到个位).答案:约7秒课堂引入“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C在同一直线上),竖直高度CF约为多少米?当堂反馈2、如图,从地面上的C,D两点测得树顶A仰角分别是45°和30°,已知CB=200m,点D在BC上,则点D离树的顶点A的距离为。BDC30°45°A图5QBCPA45060°30°答案:AB≈520(米)3、汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图5).求A、B两个村庄间的距离.(结果保留根号).今天的课堂,你收获了什么呢?等边三角形的性质和判定分类讨论的数学思想类比的学习方法课堂小结研究几何图形三步曲定义性质判定仰角和俯角A水平线B视线C视线仰角俯角向上看,视线与水平线的夹角叫做仰角;向下看,视线与水平线的夹角叫做俯角.O学习新知45°30°200米POBAD新知巩固变式1:一架直升飞机在200米的高空P处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求大楼之间的水平距离和大楼AB的高。问题1学校操场上的国旗杆要更换,要求新旗杆与旧旗杆一样高,学校决定把测量旧旗杆高的任务交给我们,为了课下顺利完成测量任务,今天请同学们设计出一套切实可行的测量方案。测国旗杆的高度一、测量工具:皮尺(长度用a、b、c……表示)测倾器(角度用α、β、γ……表示)二、要求:1、设计测量方案2、计算(1)三边之间的关系:a2+b2=c2(勾股定理);(2)两锐角之间的关系:∠A+∠B=90º;(3)边角之间的关系:ACBabctanA=absinA=accosA=bc知识回顾一、如图,Rt△ABC中,∠C=90°,温故而知新温故而知新ABC┌二、如图,Rt△ABC中,∠C=90°,(1)若∠A=30°,BC=3,则AC=(2)若∠B=60°,AC=3,则BC=(3)若∠A=α°,AC=3,则BC=(4)若∠A=α°,BC=m,则AC=3333tantanm探究2:如图,小兰发现了另外一个测量操场上旗杆高度的方法,她把测角仪搬到教学楼的三楼窗口处,测得旗杆的顶部仰角为45°,测得旗杆底部俯角为30°,教学楼离旗杆底部200米,然后她也很快就算出旗杆的高度了。简单实际问题数学模型直角三角形三角形梯形组合图形构建解通过作高转化为直角三角形解思想与方法数学建模及方程思想解方程探究2:如图,小兰发现了另外一个测量操场上旗杆高度的方法,她把测角仪搬到教学楼的三楼窗口处,测得旗杆的顶部仰角为45°,测得旗杆底部俯角为30°,教学楼离旗杆底部200米,然后她也很快就算出旗杆的高度了。思考:你能将实际问题归结为数学问题吗?
本文标题:解直角三角形的应用(仰角和俯角问题)
链接地址:https://www.777doc.com/doc-5230908 .html