您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 交通运输 > 一种基于模糊控制的两步法预测控制方法
14720107ELECTRICMACHINESANDCONTROLVol.14No.7July2010150080。。νu、Hammerstein。。HammersteinTP273A1007-449X201007-0075-06Researchmethodonatwo-stepgeneralpredictivecontrolbasedonfuzzycontrolWUJun-fengWANGShi-mingAutomaticInstituteHarbinUniversityofScienceandTechnologyHarbin150080ChinaAbstractApplicationsofpredictivecontrolforindustryareoftenlimitedtolinearsystemsandaremis-functionedonthevastmajorityofnon-linearsystemswhichcannotrealizetrackingdesiredsystemout-puts.Inordertorealizethatrealoutputvaluesofnonlinearsystemscanfollowthedesiredoutputvaluesthispaperconductedaresearchbyatwo-stepmethodofpredictivecontrolonnonlinearsystemsbasedonfuzzycontroldesignsedthecorrespondentfuzzyrulesconfirmedthefuzzyinputsandoutputsaswellasthemembershipfunctionandsetupthefuzzycontrolleraccordingtothecorrelationbetweentheinterme-diatevariablesvsolvedbypredictivecontrolmethodandtherealcontrolvariablesuimpactingonplantsformakingtheoutputvaluesfollowthedesiredoneswhichsolvedtheproblemthatitmaybehardtogetthesolutionsfortherealcontrolvariablesbecauseofitsuncertaintywhenapplyingtheHammersteinmodel.Meanwhileitillustratestherightnessandvalidityforapplyingthealgorithmofgeneralpredictivecontrolthroughsimulationexamples.Keywordstwo-steppredictivecontrolfuzzycontrolHammersteinmodelnon-linearsystemgeneralpredictivecontrol2009-10-1550975068200602140042009RFXXG0322009RFXXG0321959—、1984—。0。。two-stepmethodofpre-dictivecontrolTSMPCHammerstein。1。1-2。。Hammerstein。1generalpredictivecontrolGPC。、、。、3。GPCyk+i|k=M~iq-1Δuk+i-1|k+Hiq-1Δuk+Fiq-1ykM~iq-1=mi0+mi1q-1+…+mii-1q-i-1Hiq-1=hi1+hi2q-1+…+hinbq-nbFiq-1=fi0+fi1q-1+…+finaq-na。1q-1l=1-q-1M~iHiFi。kJk=E珓yk|k-ω→kT珓yk|k-ω→k+Δ珘uk|kλΔ珘uk|k2ω→k。2JkΔ珘uk|kΔ珘uk|k=dTω→k-Fz-1yk-Hz-1Δuk。34-5uk=uk-1+Δ珘uk|k4uk=uk-1+dTω→k-Fz-1yk-Hz-1Δuk。5dT=GTG+λI-1GT6G=g10…0g2g10gNugNu-1…g1gNgN-1…gN-Nu+17gij。2Hammerstein2.1HammersteinVolterrayt=∫t0g1τut-τdτ+∫t0∫t0g2τ1τ2ut-τ1ut-τ2dτ1dτ2+g3…+…8giτ1τ2…τiVolterray=fu1u2…un。Volterra。。5Hammerstein。Hammerstein1。6714淄(t)NLu(t)Ly(t)1HammersteinFig.1StructureofHammersteinmodal1NLνt=b1ut+b2u2t+…+bnunt。91Lyt=∫Ts0gτνt-τdτ10Tsgτ。Hammersteinyt=∫Ts0gτb1ut-τ+b2u2t-τ+…+bnunt-τdτ。1111Hammerstein4yk=k0+B1z-1Az-1uk-d+…+BPz-1Az-1uPk-d+Cz-1Az-1εk12Az-1=1+a1z-1+…+anz-nB1z-1=b10+b11z-1+…+b1nz-nBPz-1=bP0+bP1z-1+…+bPnz-nCz-1=1+c1z-1+…+cnz-n。132.2HammersteinHammerstein。νk=fukf0=014uν1。az-1yk=bz-1νk-115yaz-1=1+a1z-1+…+anz-nbz-1=b0+b1z-1+…+bnz-nab。Hammerstein。。Jk=∑N2i=N1yk+i|k-ysk+i2+∑Nuj=1λΔν2k+j-1|k16ysk+i。35Δνk=dTω-f←17ωf←。νk=νk-1+Δνk18。νkykω。ukfuk-νk=0。19uk=gνk。20206-10。33.1νuu。2。棕dTM1l淄-dTH-dTFF-1uB(z-1)A(z-1)y模糊控制器被控对象2HammersteinFig.2SchematicdiagramofgeneralizedpredictivecontrolofHammersteincombinedwithfuzzycontroller。1112777ννyu。ΔνΔu。3νuΔνΔu。ΔνΔuΔνΔu。3210-1-2-3驻u/驻淄0%%%%%%%%%%%%%%%%50%%%%%%%%%%%%%%100%%%%%%%%%%%%%150%%%%%%%%%%%%%200%%%%%%%%%%%%%250%%%%%%%%%%%%%300中间控制增量驻淄实际作用控制增量驻ut/%s(a)中间控制增量与实际作用控制增量对比图3210-1-2-3u/驻淄0%%%%%%%%%%%%%%%%50%%%%%%%%%%%%%%100%%%%%%%%%%%%%150%%%%%%%%%%%%%200%%%%%%%%%%%%%250%%%%%%%%%%%%%300t/%s(b)中间控制增量与实际作用控制增量对比图实际作用控制量u中间控制增量驻淄3ΔvΔuFig.3Comparativeanalysisdiagramanalyzingtherela-tionshipbetweenthecontrolincrementsΔvandΔuaswellastherelationshipbetweenthecontrolvar-iablesvkanduk2ΔνΔuGAUSS。3ΔνΔu。ΔνX=-4-3-2-101234NSBNBNMNSZPSPMPBPSB“-3”-2-24。ΔuY=-2-1012NBNSZEPSPB“-1”-10.25。NSBNBNMNSZPSPMPBPSB隶属度输入变量驻ν4ΔνFig.4FuzzycontrollerinputmembershipfunctiondiagramNBNSZEPSPB隶属度输入变量驻u5ΔuFig.5Fuzzycontrolleroutputmembershipfunctiondiagram33ΔνΔuaifVisNSBthenUisNB1bifVisNBthenUisNS1cifVisNMthenUisNS1difVisNSthenUisNS1eifVisZthenUisZE0.65fifVisPSthenUisPS1gifVisPMthenUisPB0.65hifVisPBthenUisPB1iifVisPSBthenUisPB1ΔνΔuΔu。e“”0.65。ΔνΔu。Δν2.2ΔuuνyyΔu8714Δu。Δuu。3.21HammersteinHammerstein。4。2。3ΔνΔuHammerstein。4u。。44.1ⅠⅠyk=yk-11+yk-12+uk-2。ykyk=ayk-1+buk-2。Hammersteinukyk。a=0.5003b=0.5101。4。。P=5M=2h=0.612。3.1453.1Δuu。ΔuΔν6。0.80.60.40.20-0.2-0.4-0.6-0.8驻u-2%%-1.5%%%%-1%%-0.5%%%%%0%%%%%0.5%%%%%1%%%%%1.5%%%%%2驻淄6ΔuΔvFig.6FuzzyrelationshipdiagrambetweenΔuandΔvuy。7。t/%s2.521.510.50y0%%%%%%%%%%%50%%%%%%%%%100%%%%%%%%%150%%%%%%%%200%%%%%%%%250%%%%%%%%300期望输出值F-TSGPC控制输出值7Fig.7Thecharacteristiccurveoffollowingthedesiredoutputsvalues1805。977。。4.2ⅡⅡyk=yk-1+yk-21+y2k-1+y2k-2+u2k-2。3.2。yk=ayk-1-byk-2+cuk-2。a=0.1955b=0.1896c=0.3589。8。2.521.510.50y0%%%%%%%%%%%50%%%%%%%%%100%%%%%%%%%150%%%%%%%%200%%%%%%%%250%%%%%%%%300t/%s期望输出值F-TSGPC控制输出值8Fig.8Thecharacteristiccurveoffollowingthedesiredoutputvalues。。。5Hammerstein。。1.M.2008.2.J.2006214457-461.NIUYongxiaoDINGBaocangSUNHexu.Robuststabilityoftwo-steppredictivecontrolforsystemswithinputnonlinearitiesJ.ControlandDecision2006214457-461.3.M.1993.4.M.1984.5.HammersteinJ.200318124-28.DINGBaocangLIShaoyuan.DesignandanalysisofHammersteinnonlinearcontrolsystemswithconstraintsJ.ControlandDeci-sion200318124-28.6.HammersteinJ.200824486-88.QIANJieQUANLiHUZijian.StudyonnonlinearpredictivecontrolofHammersteinmodelsJ.Control&Automation200824486-88.7.M.1998.8.J.2004306954-960.DINGBaocangXIYugeng.Designandanalysisofthedomainofattractionforgenera
本文标题:一种基于模糊控制的两步法预测控制方法
链接地址:https://www.777doc.com/doc-5234878 .html