您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 勾股定理竞赛培训题(含答案)
勾股定理竞赛培训题1、如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.(1)①依题意补全图2;②求证:AD=BE,且AD⊥BE;③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;(2)如图3,正方形ABCD边长为,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.解:(1)①依照题意补全图2,如下图(一)所示.②证明:∵∠ACD+∠DCB=∠ACB=90°,∠BCE+∠DCB=∠DCE=90°,∴∠ACD=∠BCE.∵△ABC和△CDE都是等腰直角三角形,∴AC=BC,DC=EC.在△ADC和△BEC中,有,∴△ADC≌△BEC(SAS),∴AD=BE,∠BEC=∠ADC.∵点A,D,E在同一直线上,△CDE是等腰直角三角形,∴∠CDE=∠CED=45°,∠ADC=180°﹣∠CDE=135°,∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,∴AD⊥BE.③依照题意画出图形,如图(二)所示.∵S△ABC+S△EBC=S△CAE+S△EAB,即AC•BC+BE•CM=AE(CM+BE),∴AC2﹣AE•BE=CM(AE﹣BE).∵△CDE为等腰直角三角形,∴DE=2CM,∴AE﹣BE=2CM.(2)依照题意画出图形(三).其中AB=,DP=1,BD=AB=由勾股定理得:BP==3.结合(1)③的结论可知:AM===1.故点A到BP的距离为1.【点评】本题考查了旋转的性质、全等三角形的判定及性质、三角形的面积公式、角的计算以及勾股定理,解题的关键:(1)①结合题意画出图形;②找出△ADC≌△BEC;③利用分割法求组合图形的面积;(2)利用类比法借助(1)③的算式求出结论.本题属于中档题,(1)①②难度不大;③难度不小,此处用到了分割组合图形求面积来找等式,该小问处切记线段AC当成已知量;(2)利用类比的方法套入(1)③的算式即可.解决该题型题目时,画出图形,注意数形结合是关键.2、(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD.则①∠BEC=______°;②线段AD、BE之间的数量关系是______.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.(3)探究发现:如图3,P为等边△ABC内一点,且∠APC=150°,且∠APD=30°,AP=5,CP=4,DP=8,求BD的长.解:(1)①120°,②AD=BE…(2)(3)如下图所示由(2)知△BEC≌△APC,∴BE=AP=5,∠BEC=∠APC=150°,∵∠APD=30°,AP=5,CP=4,DP=8,∠APD=30°,∠EPC=60°,∴∠BED=∠BEC-∠PEC=90°,∠DPC=120°又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上∴DE=DP+PE=8+4=12,BE=5,∴BD的长为133、如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=10cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.【考点】三角形综合题.【分析】(1)设BD=2x,AD=3x,CD=4x,根据勾股定理求出AC根据等腰三角形的判定定理解答;(2)根据三角形的面积公式求出三角形的三边长,根据等腰三角形的性质列式计算即可;(3)分DE=DM、ED=EM、MD=ME三种情况,根据等腰三角形的性质解答.【解答】解:(1)设BD=2x,AD=3x,CD=4x,在Rt△ACD中,AC==5x,又AB=5x,∴AB=AC,∴△ABC是等腰三角形;(2)S△ABC=×5x×4x=10cm2,解得,x=1cm,则BD=2cm,AD=3cm,CD=4cm,AC=5cm,①当MN∥BC时,AM=AN,即5﹣t=t,∴t=2.5,当DN∥BC时,AD=AN,则t=3,故若△DMN的边与BC平行时,t值为2.5或3.②当点M在BD上,即0≤t<2时,△MDE为钝角三角形,但DM≠DE,当t=2时,点M运动到点D,不构成三角形,当点M在DA上,即2<t≤5时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣2=2.5,∴t=4.5,如果ED=EM,则点M运动到点A,∴t=5,如果MD=ME=t﹣2,则(t﹣2)2﹣(t﹣3.5)2=22,∴t=,综上所述,符合要求的t值为4.5或5或.【点评】本题考查的是等腰三角形的判定和性质、三角形的三边关系以及勾股定理的应用,掌握等腰三角形的判定定理、灵活运用分情况讨论思想是解题的关键.4、已知,△ABC中,AC=BC,∠ACB=90°,D为AB的中点,若E在直线AC上任意一点,DF⊥DE,交直线BC于F点.G为EF的中点,延长CG交AB于点H.(1)若E在边AC上.①试说明DE=DF;②试说明CG=GH;(2)若AE=3,CH=5.求边AC的长.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.【分析】(1)①连接CD,推出CD=AD,∠CDF=∠ADE,∠A=∠DCB,证△ADE≌△CDF即可;②连接DG,根据直角三角形斜边上中线求出CG=EG=GF=DG,推出∠GCD=∠GDC,推出∠GDH=∠GHD,推出DG=GH即可;(2)求出EF=5,根据勾股定理求出EC,即可得出答案.【解答】解:(1)①连接CD,∵∠ACB=90°,D为AB的中点,AC=BC,∴CD=AD=BD,又∵AC=BC,∴CD⊥AB,∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,∵DF⊥DE,∴∠EDF=∠EDC+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中∴△ADE≌△CDF,∴DE=DF.②连接DG,∵∠ACB=90°,G为EF的中点,∴CG=EG=FG,∵∠EDF=90°,G为EF的中点,∴DG=EG=FG,∴CG=DG,∴∠GCD=∠CDG又∵CD⊥AB,∴∠CDH=90°,∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,∴∠GHD=∠HDG,∴GH=GD,∴CG=GH.(2)如图,当E在线段AC上时,∵CG=GH=EG=GF,∴CH=EF=5,∵△ADE≌△CDF,∴AE=CF=3,∴在Rt△ECF中,由勾股定理得:,∴AC=AE+EC=3+4=7;如图,当E在线段CA延长线时,AC=EC﹣AE=4﹣3=1,综合上述AC=7或1.5、如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连结AF,BF.(1)求AE和BE的长.(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB,AD上时,直接写出相应的m的值.(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P,Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.解:(1)在Rt△ABD中,AB=5,AD=,由勾股定理,得BD===.∵S△ABD=BD·AE=AB·AD,∴AE===4.在Rt△ABE中,AB=5,AE=4,由勾股定理,得BE=3.(第27题图解①)(2)设平移中的三角形为△A′B′F′,如解图①所示.由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠5=∠1,B′F′=BF=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠1=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2.∵∠1=∠2,∠5=∠1,∴∠5=∠6.又易知A′B′⊥AD,∴△B′F′D为等腰三角形,∴B′D=B′F′=3,∴BB′=BD-B′D=-3=,即m=.m=3或(对一个得2分)(3)存在.理由如下:在旋转过程中,等腰△DPQ依次有以下4种情形:①如解图②所示,点Q落在BD延长线上,且PD=DQ,易知∠2=2∠Q.(第27题图解②)∵∠1=∠3+∠Q,∠1=∠2,∴∠3=∠Q∴A′Q=A′B=5,∴F′Q=F′A′+A′Q=4+5=9.在Rt△BF′Q中,由勾股定理,得BQ===3.(第27题图解③)∴DQ=BQ-BD=3-.②如解图③所示,点Q落在BD上,且PQ=DQ,易知∠2=∠P.∵∠1=∠2,∴∠1=∠P,∴BA′∥PD,则此时点A′落在BC边上.∵∠3=∠2,∴∠3=∠1,∴BQ=A′Q,∴F′Q=F′A′-A′Q=4-BQ.在Rt△BQF′中,由勾股定理,得BF′2+F′Q2=BQ2,即32+(4-BQ)2=BQ2,解得BQ=.∴DQ=BD-BQ=-=.③如解图④所示,点Q落在BD上,且PD=DQ,易知∠3=∠4.(第27题图解④)∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-∠2.∵∠1=∠2,∴∠4=90°-∠1.∴∠A′QB=∠4=90°-∠1,∴∠A′BQ=180°-∠A′QB-∠1=90°-∠1,∴∠A′QB=∠A′BQ,∴A′Q=A′B=5,∴F′Q=A′Q-A′F′=5-4=1.在Rt△BF′Q中,由勾股定理,得BQ===,∴DQ=BD-BQ=-.④如解图⑤所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.(第27题图解⑤)∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD-BQ=-5=.综上所述,存在4组符合条件的点P,Q,使△DPQ为等腰三角形,其中DQ的长度分别为3-,,-或
本文标题:勾股定理竞赛培训题(含答案)
链接地址:https://www.777doc.com/doc-5239742 .html