您好,欢迎访问三七文档
功动能测试题一、不定项选择题1、一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能可能()A.一直增大B.先逐渐减小至零,再逐渐增大C.先逐渐增大至某一最大值,再逐渐减小D.先逐渐减小至某一非零的最小值,再逐渐增大2、A、B两个物体的质量分别为m1和m2,并排静止在水平地面上,用同向水平拉力F1、F2分别作用于物体A和B上,分别作用一段时间后撤去,两物体各自滑行一段距离后停止下来,两物体运动的速度—时间图象分别如图5-5中图线a、b所示,已知拉力F1、F2分别撤去后,物体做减速运动过程的速度—时间图线彼此平行(相关数据已在图中标出),由图中信息可以得出()A.若F1=F2,则m1m2B.若m1=m2,则力F1对物体A所做的功较多C.若m1=m2,则整个过程中摩擦力对物体B做的功较多D.若m1=m2,则整个过程中摩擦力对物体A和B做的功一样多3、汽车发动机的额定功率为60kW,汽车质量为5t.汽车在水平面上行驶时,阻力与车重成正比,g=10m/s2.当汽车以额定功率匀速行驶至速度达12m/s时,突然减小油门,使发动机功率减小到40kW.对接下去汽车的运动情况的描述,正确的有()A.先做匀减速运动再做匀加速运动B.先做加速度增大的减速运动再做匀速运动C.先做加速度减小的减速运动再做匀速运动D.最后的速度大小是8m/s4、静止在水平面上的物块在如图5-7甲所示的水平拉力作用下做直线运动,其速度—时间图象如图乙所示,若物块与水平面间的动摩擦因数处处相同,则()图5-7A.F1+F3=2F2B.F1+F3>2F2C.全过程中拉力做的功等于物块克服摩擦力做的功D.全过程中拉力做的功等于零二、计算题5、如图5-8所示,内壁光滑的细管弯成半径为R=0.4m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点平滑连接.置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态.将一个质量为m=0.8kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C处后对轨道的压力为F1=58N.水平轨道以B处为界,左侧AB段长为x=0.3m,与小球的动摩擦因数为μ=0.5,右侧BC段光滑.g=10m/s2,求:(1)弹簧在压缩时所储存的弹性势能.(2)小球运动到轨道最高处D点时对轨道的压力.图5-86、如图5-9所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B,C是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=1.0m,现有一个质量为m=0.2kg的可视为质点的小物体从D点的正上方E点处自由下落,DE距离h=1.6m,物体与斜面AB之间的动摩擦因数μ=0.5.取sin37o=0.6,cos37o=0.8,g=10m/s2.(1)求物体第一次通过C点时轨道对物体的支持力FN的大小;(2)要使物体不从斜面顶端飞出,斜面的长度LAB至少要多长?(3)若斜面已经满足(2)要求,物体从E点开始下落,直至最后在光滑圆弧轨道做周期性运动,求在此过程中系统因摩擦所产生的热量Q的大小.5-97、如图5-11所示,遥控电动赛车(可视为质点)从A点由静止出发,经过时间t后关闭电动机,赛车继续前进至B点水平飞出,恰好在C点沿着切线方向进入固定在竖直平面内的圆形光滑轨道,通过轨道最高点D后回到水平地面EF上,E点为圆形轨道的最低点.已知赛车在水平轨道AB部分运动时受到恒定阻力f=0.4N,赛车的质量m=0.4kg,通电后赛车的电动机以额定功率P=2W工作,轨道AB的长度L=2m,B、C两点的高度差h=0.45m,连线CO和竖直方向的夹角α=37°,圆形轨道的半径R=0.5m,空气阻力可忽略,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)赛车运动到C点时速度vC的大小;(2)赛车经过最高点D处时对轨道压力FN的大小;(3)赛车电动机工作的时间t.图5-11以下是答案一、多项选择题1、ABD【解析】当所加恒力的方向与物体运动的方向成锐角时,该力一直做正功,其动能一直增大,A正确;当所加恒力的方向与物体运动的方向相反时,物体先做匀减速运动后做反向的匀加速运动,其动能先逐渐减小至零,再逐渐增大,B正确;当所加恒力的方向与物体运动的方向成钝角(不等于180°)时,其动能先逐渐减小至某一非零的最小值,再逐渐增大,D正确;物体不可能出现动能先逐渐增大至某一最大值,再逐渐减小的情况,C错误.2、AD【解析】撤去外力后,物体做匀减速运动,由图象知两物体的加速度相同,a=μg=1m/s2,所以μ1=μ2=0.1,拉力作用时的加速度a′=Fm-μg,因a′1a′2,故F1=F2时有m1m2,选项A正确;由图象知,两物体运动过程的总位移xA=xB=5m,对整个过程中应用动能定理有WF=μmgx,当m1=m2时,即两个力做功相等,选项BC错误,D正确.3、CD【解析】发动机功率减小,由公式P=Fv知,在速度不能突变的情况下,只能牵引力F突然变小,fF,汽车做减速运动,使得汽车速度v变小,由公式P=Fv,v变小而P不变,则F变大,由f-F=ma,可知汽车减速运动的加速度变小,当再次出现F=f时,汽车做匀速运动,选项AB错误,C正确;由f=P额vm=5×103N,而P=fv′,解得v′=Pf=8m/s,选项D正确.4、AC【解析】匀速运动阶段,根据平衡条件有,F2=μmg.由速度图象,匀加速阶段的加速度a1=v01s,匀减速阶段的加速度a2=-v01s;根据牛顿第二定律,有F1-μmg=ma1,F3-μmg=ma2,解得F1+F3=2F2.对全运动过程应用动能定理WF-μmgx=0,得WF=μmgx.所以选项AC正确.二、计算题5、(1)11.2J(2)10N方向竖直向上【解析】(1)对小球在C处,由牛顿第二定律得F1-mg=mv21R解得v1=F1-mgRm=5m/s从A到B由动能定理得Ep-μmgx=12mv21故Ep=12mv21+μmgx=11.2J(2)从C到D由机械能守恒定律得12mv21=2mgR+12mv22故v2=v21-4gR=3m/s由于v2gR=2m/s,所以小球在D处对轨道外壁有压力.小球在D处,由牛顿第二定律得F2+mg=mv22R故F2=mv22R-g=10N由牛顿第三定律可知,小球在D点对轨道的压力大小为10N,方向竖直向上.6、(1)12.4N(2)2.4m(3)4.8J【解析】(1)物体从E到C,由能量守恒得:mg(h+R)=12mv2C在C点,由牛顿第二定律得:FN-mg=mv2CR联立解得FN=12.4N(2)从E到A过程,由动能定理得WG-Wf=0WG=mg(h+Rcos37°-LABsin37°)Wf=μmgcos37°·LAB联立解得LAB=2.4m(3)因为mgsin37°>μmgcos37°,所以物体不会停在斜面上.物体最后以C为中心、B为一侧最高点沿圆弧轨道做往返运动.从E点开始直至稳定,系统因摩擦所产生的热量即为损失的机械能,Q=ΔEpΔEp=mg(h+Rcos37°)联立解得Q=4.8J7、(1)5m/s(2)1.6N(3)2s【解析】(1)赛车经过B点做平抛运动由于vy=2gh=3m/s故vC=vysinα=5m/s(2)从C点运动到最高点D的过程中,由动能定理得-mgR(1+cosα)=12mv2D-12mv2C设赛车经过最高点D处时轨道对赛车的支持力为FN′,由牛顿第二定律FN′+mg=mv2DR联立解得FN′=1.6N由牛顿第三定律可知,赛车经过最高点D处时对轨道压力大小FN=1.6N.(3)赛车在B点的速度大小为vB=vytanα=4m/s从A点到B点的过程中由动能定理有Pt-fL=12mv2B解得t=2s
本文标题:动能定理单元测试题
链接地址:https://www.777doc.com/doc-5253057 .html