您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 隐形圆解决最值及面积问题---含答案
定弦定角最值问题【定弦定角题型的识别】有一个定弦,一个主动点,一个从动点,定弦所对的张角固定不变。【题目类型】图形中一般求一个从动点到一个定点线段长度最值问题,一般涉及定弦定角最值问题【解题原理】同弧所对的圆周角相等,定弦的同侧两个圆周角相等,则四点共圆,因此动点的轨迹是圆。(线段同侧的两点对线段的张角相等,则这两点以及线段的两个端点共圆。)【一般解题步骤】①让主动点动一下,观察从动点的运动轨迹,发现从动点的运动轨迹是一段弧。②寻找不变的张角(这个时候一般是找出张角的补角,这个补角一般为45°、60°或者一个确定的三角函数的对角等)③找张角所对的定弦,根据三点确定隐形圆。④确定圆心位置,计算隐形圆半径。⑤求出隐形圆圆心至所求线段定点的距离。⑥计算最值:在此基础上,根据点到圆的距离求最值(最大值或最小值)。典型例题讲解1.如图,△ABC中,AC=3,BC=24,∠ACB=45°,D为△ABC内一动点,⊙O为△ACD的外接圆,直线BD交⊙O于P点,交BC于E点,弧AE=CP,则AD的最小值为()A.1B.2C.2D.2441解:∵∠CDP=∠ACB=45°∴∠BDC=135°(定弦定角最值)如图,当AD过O′时,AD有最小值∵∠BDC=135°∴∠BO′C=90°∴△BO′C为等腰直角三角形∴∠ACO′=45°+45°=90°∴AO′=5又O′B=O′C=4∴AD=5-4=12.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为()A.213B.213C.5D.916解:连接AE∵AD为⊙O的直径∴∠AEB=∠AED=90°∴E点在以AB为直径的圆上运动当CE过圆心O′时,CE有最小值为2133.如图,在△ABC中,AC=3,BC=24,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()A.1B.2C.2D.324解:连接CD∴∠PAC=∠PDC=∠ACB=45°∴∠BDC=135°如图,当AD过圆心O′时,AD有最小值∵∠BDC=135°∴∠BO′C=90°∴O′B=O′C=4又∵∠ACO′=90°∴AO′=5∴AD的最小值为5-4=14.如图,⊙O的半径为2,弦AB的长为32,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的面积的最大值是()A.3612B.336C.3312D.3465.如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是()A.21B.22C.23D.436.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线绕O点旋转时,CD的最小值为__________解:连接DM∵D是弦EF的中点∴DM⊥EF∴点D在以A为圆心的,OM为直径的圆上运动当CD过圆心A时,CD有最小值,连接CM∵C为弧AB的中点∴CM⊥AB∴CD的最小值为127.如图,AB是⊙O的直径,AB=2,∠ABC=60°,P是上一动点,D是AP的中点,连接CD,则CD的最小值为__________解:连接OD∵D为弦AP的中点∴OD⊥AP∴点D在以AO为直径的圆上运动当CD过圆心O′时,CD有最小值,过点C作CM⊥AB于M∵OB=OC,∠ABC=60°∴△OBC为等边三角形∴OM=21,CM=23∴O′C=47∴CD的最小值为21478.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是().A.210-2B.6C.D.4【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解.【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示.B′D的长最小值=DE-EB′=.故选A.【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E、B′、D三点共线时,等号成立.9.如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是.【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问题得解.【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=,OD=,∴DH的最小值为OD-OH=.213-2226222102BDDEBEOHGFBCADE112AB551【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用的基本模型解决.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是().A.210-2B.6C.D.4【思路探究】根据E为AB中点,BE=B′E可知,点A、B、B′在以点E为圆心,AE长为半径的圆上,D、E为定点,B′是动点,当E、B′、D三点共线时,B′D的长最小,此时B′D=DE-EB′,问题得解.【解析】∵AE=BE,BE=B′E,由圆的定义可知,A、B、B′在以点E为圆心,AB长为直径的圆上,如图所示.B′D的长最小值=DE-EB′=.故选A.【启示】此题属于动点(B′)到一定点(E)的距离为定值(“定点定长”),联想到以E为圆心,EB′为半径的定圆,当点D到圆上的最小距离为点D到圆心的距离-圆的半径.当然此题也可借助三角形三边关系解决,如,当且仅当点E、B′、D三点共线时,等号成立.【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是.【思路探究】根据正方形的轴对称性易得∠AHB=90°,故点H在以AB为直径的圆上.取AB中点O,当D、H、O三点共线时,DH的值最小,此时DH=OD-OH,问题得解.【解析】由△ABE≌△DCF,得∠ABE=∠DCF,根据正方形的轴对称性,可得∠DCF=∠DAG,∠ABE=∠DAG,所以∠AHB=90°,故点H在以AB为直径的圆弧上.取AB中点O,OD交⊙O于点H,此时DH最小,∵OH=,OD=,∴DH的最小值为OD-OH=.【启示】此题属于动点是斜边为定值的直角三角形的直角顶点,联想到直径所对圆周角为直角(定弦定角),故点H在以AB为直径的圆上,点D在圆外,DH的最小值为DO-OH.当然此题也可利用的基本模型解决.DHODOH213-2226222102BDDEBEOHGFBCADE112AB551DHODOH【针对训练】1.如图,在△ABC中,∠ACB=90°,AC=2,BC=1,点A,C分别在x轴,y轴上,当点A在轴正半轴上运动时,点C随之在轴上运动,在运动过程中,点B到原点O的最大距离为().A.B.C.D.3作AC的中点D,连接OD、BD,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵BD=2,OD=AD=21AC=1,∴点B到原点O的最大距离为1+2.故选C2.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为().A.B.C.D.43.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P、Q分别是边BC和半圆上的运点,连接PQ,则PQ长的最大值与最小值的和是().A.6B.C.9D.优质解答如图,设O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=21AC=4,∴P1Q1最小值为OP1-OQ1=1,xy561232210-2213-22131322如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故答案为:9.4.如图,AC=3,BC=5,且∠BAC=90°,D为AC上一动点,以AD为直径作圆,连接BD交圆于E点,连CE,则CE的最小值为().A.B.C.5D.5.如图,已知正方形ABCD的边长为2,E是BC边上的动点,BF⊥AE交CD于点F,垂足为G,连结CG,则CG的最小值为().A.B.C.D.6.如图,△ABC、△EFG是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FG相交于点M,当△EFG绕点D旋转时,线段BM长的最小值是A.B.C.D.7.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连结A′C,则A′C长度的最小值是.8.(2017威海)如图,△ABC为等边三角形,AB=2,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.解答解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是弧AC,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:213213916513121212331231此时PA=PC,OB⊥AC,
本文标题:隐形圆解决最值及面积问题---含答案
链接地址:https://www.777doc.com/doc-5261492 .html